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162 SIR G. H. DARWIN ON THE

PrEFACE.

Morg than half a century ago Kpouarp Roomr wrote his celebrated paper on the
form assumed by a liquid satellite when revolving, without relative motion, about a
solid planet.® In consequence of the singular modesty of Rocmr’s style, and also
because the publication was made at Montpellier, this paper seems to have remained
almost unnoticed for many years, but it has ultimately attained its due position as a
classical memoir.

The laborious computations necessary for obtaining numerical results were carried
out, partly at least, by graphical methods. Verification of the calculations, which as
far as I know have never been repeated, forms part of the work of the present paper.
The distance from a spherical planet which has been called “Roche’s limit” is
expressed by the number of planetary radii in the radius vector of the nearest
possible infinitesimal liquid satellite, of the same density as the planet, revolving so
as always to present the same aspect to the planet. Our moon, if it were homo-
geneous, would have the form of one of RocrE's ellipsoids ; but its present radius
vector is of course far greater than the limit. RocHE assigned to the limit in
question the numerical value 2°44 ; in the present paper I show that the true value
is 2455, and the closeness of the agreement with the previously accepted value
affords a remarkable testimony to the accuracy with which he must have drawn his
figures.

He made no attempt to obtain numerical solutions except in the case of the
infinitely small satellite. In this case the figure is rigorously ellipsoidal, but for
a finite satellite this is no longer the case ; nor do his equations afford the means of
determining exactly the ellipsoid which most nearly represents the truth. These
deficiencies are made good below, and we find that even in the extreme case of two
equal masses in limiting stability the ellipsoid is a much closer approximation to
accuracy than might have been expected. ‘

It is natural that RoceE, writing as he did half a century ago, should not have
been in a position to discuss the stability of his solutions with completeness, and
although he did much in that direction he necessarily left a good deal unsettled.

In 1887 I attempted the discussion of some of the problems to which this paper is
devoted, by means of spherical harmonic analysis.t PoiNcarE's celebrated memoir
on figures of equilibrium] was published just when my work was finished, and I kept
my paper back for a year in order to apply to my solutions the principles of stability

¥ «“La figure dune masse fluide soumise & lattraction d’un point éloigné,” ¢Acad. des Sci. de
Montpellier,’” vol. 1, 1847-50, p. 243.

t “Tigures of Equilibrium of Rotating Masses of Fluid,” ¢Phil. Trans. Roy. Soc.,’ vol. 178 (1887) A,
pp. 379428,

1 “Sur Péquilibre d’une masse fluide animée d’un mouvement de rotation,” ¢ Acta. Math.” 7: 3, 4 (1885),
pp. 259-380.
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FIGURE AND STABILITY OF A LIQUID SATELLITE. 163

enounced by him. The attempt is given in an appendix to my paper, but
unfortunately I failed to understand his work completely, and my investigation,
as it stands, is erroneous from the fact that one term in the energy is omitted.®
I think, however, that the defect may easily be made good.

The analysis of the present paper is carried out by means of ellipsoidal harmonic
analysis. In the course of the work it becomes necessary to refer to previous papers
by myself, all published in the ¢ Philosophical Transactions’; they are: ¢ Ellipsoidal
Harmonic Analysis,” vol. 197 (1901) A, pp. 461-557 ; « The Pear-Shaped Figure of
Equilibrium of a Rotating Mass of Liquid,” vol. 198 (1902) A, pp. 301-331 ; “The
Stability of the Pear-Shaped Figure of Equilibrium, &e.,” vol. 200 (1903) A,
pp. 251-814; ¢ The. Integrals of the Squares of Ellipsoidal Surface Harmonic
Functions,” vol. 203 (1904) A, pp. 111-137. These papers are hereafter referred to
by the abridged titles “ Harmonics,” “The Pear-Shaped Figure,” ‘ Stability,” and
“Integrals.”

The analysis involved in the investigation is unfortunately long and complicated,
but the subject itself is not an easy one, and the complication was perhaps
unavoidable.

The principal inducement to attack this problem was the hope that it might throw
further light on the form of the pear-shaped figure in an advanced stage of develop-
ment when it might be supposed to consist of two bulbs of liquid joined by a very
thin neck. The arguments adduced below seem to show that such a figure must be
unstable.

M. LiapouNo¥F has recently published a paper in which he states that he is able
to prove the instability of the pear-shaped figure even when only infinitesimally
furrowed.t In view of my previous work on the stability of this figure, and from
other considerations it seems very difficult to accept the correctness of this result.

At the end a summary is given of the conclusions arrived at, and this last subject
is discussed amongst others.

Parr I.—ANALYSIS.
§ 1. The Stability of Liquid Satellites.

This paper deals with two problems concerning liquid satellites which possess so
much resemblance that I did not for some time perceive that there is an essential
difference between them. One of these is the determination of the figures and of the
secular stability of two masses of liquid revolving about one another in a circular
orbit without relative motion of their parts. We may refer to this as the problem of

* This is the term denoted 4w? (31)%/1 below. ‘
t “Sur un probléme de Tchebychef,” ¢ Acad. Imp. des Sci. de St. Pétersbourg,” vol. 17, No. 3 (1905).
Y 2
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164 SIR G. H. DARWIN ON THE

“the figures of equilibrium”; the other may be called “ RocHES problem,” and it
differs only from the former in that one of the two masses of liquid is replaced by a
particle or by a rigid sphere. However, in the numerical solutions found hereafter,
RocrE's problem is slightly modified, for the rigid sphere is replaced by a rigid
ellipsoid of exactly the same form as that assumed by the other mass of liquid in the
problem of the figures of equilibrium. Thus, with this modification, the two problems
become identical as regards the shape of the figures; but, as we shall see, they differ
widely as to the conditions of secular stability. This difference arises from the fact
that in the one case there are two bodies which may be subject to tidal friction, and
in the other there is only one.

If in either problem there is no solution when the angular momentum has less than
a certain critical value, if for that value there is one solution and for greater values
there are two, then the principle of PoiNcarE shows that the single solution is the
starting point of a pair of which one has one fewer degrees of instability than the
other. 1If, then, one of the two solutions is continuous with a solution which is clearly
stable, it follows that the determination of minimum angular momentum will give us
the limiting stability of that solution ; and this is the point of greatest interest in all
such problems.

Our two problems differ in the value of the angular momentum of which the
minimum has to be found. For, if in RocHE'S problem the second body is a particle,
it has only orbital momentum ; if the second body is a sphere, it must be deemed to
have no rotation; and, finally, in the modified form of the problem, the rotational
momentum of the rigid body must be omitted from the angular momentum, which
has to be a minimum for limiting stability.

It will be useful to make a rough preliminary investigation of the regions in which
we shall have to look for cases of limiting stability in the two problems. For this
purpose I consider the case of two spheres as the analogue of the problem of the
figure of equilibrium, and the case of a sphere and a particle as the analogue of
RocaE’s problem. ‘

Let p be density, and let the mass of the whole system be §mpa’; let the masses ot
the two spheres be #mpa’\/(1+\) and Fwpa’/(1+)\), or for RocHE's problem let the
latter be the mass of the particle.

Let  be the distance from the centre of one sphere to that of the other, or to the
particle, as the case may be; and o the orbital angular velocity.

In both cases we have "

23 . 4 .3
@’ = ZwPa’.

The centre of inertia of the two masses is distant /(1 +\) and M/(1+\) from their
respective centres, and we easily find the orbital momentum to be
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FIGURE AND STABILITY OF A LIQUID SATELLITE. 165

In both problems the rotational momentum of the first sphere is
/ A \ 5/3
2 (470a3) a2 2

In the first problem the rotational momentum of the second sphere is

1
3 (§mpa’) a’ m ,
and in the second problem it is nil.

If, then, we write L, for the total angular momentum of the two spheres, and L,
for that of the sphere and particle, we have

4 2 1+)\5/3 )\7"2 ]
Ll 377[)3; w[ (1+)\‘)5/3+ (1_{_)\)2 3;2 s

5/3 2
Ly, = 4mpal w|: N M ]
*(1 +}\)5/3 (1+))’a?

On substituting for w its value in terms of 7, these expressions become

= (4mp)™ (_1__.5.)? [5 N3 (1 4 M) <r> ” ) <§>1/2;] .

To determine the minima of these functions, we differentiate with respect to », and

equate to zero.
Then, if 7, 7, denote the two solutions, we find

71 : — _6__ 5/3 13
<a> S (L) (140,

(Z) = gy
a > '

Whence
o A4 (1 )\5/3 1/4
Minimum Ll = (%Wp)s/z a®. 4 (1 § 5)1/4 (1( +_)|:)23/1:2 ?
iy \°
Minimum L, = (%n'p)g/ *a’. 4 (1 % 5)1/4 (1 T )\)23/12 :

/4
The ratio of the minimum of I, to that of L, is <);/3+ 1) . Thus as X\ rises from

0 to oo this ratio falls from infinity to unity.
All the possible cases of the first problem are comprised between A = 0 and A = 1.
When A =0, 7, = o; and when A = 1,

D= /(3. 2) = 1738,
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166 SIR G. H. DARWIN ON THE

Thus, in the problem of the figures of equilibrium, if one of the two masses is large
compared with the other, the two must be far apart to secure secular stability. This
is exactly what is to be expected from the theory of tidal friction, for limiting
stability is reached when there is coalescence of the two solutions which correspond
to the cases where each body always presents the same face to the other.*

The result when the two masses are equal becomes more easily intelligible when it
1s expressed in terms of the radius of either of them. That radius is a/2'%, so that
when A =1

r = 1738 = 2:191 <§ali/g>

Thus, in the latter case, limiting stability is reached when the two spheres are
nearly in contact with one another, for if » were equal to twice the radius of either
they would be touching.

When the two bodies are far apart, the solution may be obtained by spherical
harmonic analysis, and has comparatively little interest. But when the bodies are
equal or nearly equal in mass, limiting stability for the figure of equilibrium would
seem, from this preliminary investigation, to occur when they are quite close together.
Accordingly, in finding numerical solutions hereafter, I have devoted more attention
to this case than to any other.

Turning now to the solution of the analogue of Rocur's problem, we see that when
A=0, 7,=0. This would mean that a very small liquid satellite could be brought
quite up to its planet without becoming unstable. But we shall see that, when the
satellite is no longer constrainedly a sphere, instability first oceurs through the
variations in the shape of the satellite. This preliminary solution does not, therefore,
throw much light on the matter, excepting as indicating that we must consider the
cases where the satellite is as near to the planet as possible.

Next; when N = 1, we have

a a
ry= (8. 2 a = /12 <ﬁ> = 1549 <§m>

Thus, when the two masses are equal, their distance apart is only about 1% radii of
either, and they will overlap. Here again it would seem as if stability would persist
up to contact, but, as before, instability first sets in through variations in the shape
of the satellite.

Finally, when \ is large, , also becomes large. This case is the same in principle
as that considered in the problem of the figures of equilibrium, for it means that if a
large liquid body (formerly called the satellite) be attended by a small rigid body
(formerly called the planet), secular stability will be attained when the small rigid
body has been repelled by tidal friction to a great distance from the large liquid body.

* See ¢ Roy. Soc. Proc.,” vol. 29, 1879, p. 168, or Appendix G () to THoMSON and Tarr’s ¢ Nat. Phil.?
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TIGURE AND STABILITY OF A LIQUID SATELLITE. 167

As this case may be adequately treated by spherical harmonic analysis, it need not
detain us, and we see that the most interesting cases of RocHE'S problem are those
where X lies between 0 and 1.

§ 2. Figures of Hquilibrium of a Rotating Mass of Liquid and their
Stabilety.

A mass of liquid, consisting of either one or more portions, is rotating, without
relative motion of its parts, about an axis through its centre of inertia with angular
velocity w. We choose as an arbitrary standard figure one which does not differ
very widely from a figure of equilibrium, and we suppose that any departure from the
standard figure may be defined by two parameters e and f, which may be called
ellipticities. It is unnecessary to introduce more than two ellipticities, because the
result for any number becomes obvious from the case of two. We also assume a
definite angular velocity for the standard configuration.

Let V (e, ) denote the gravitational energy lost in the concentration of the system
from a condition of infinite dispersion into the configuration denoted by e, f.

Let I(e, f), w(e, f) denote the moment of inertia and angular velocity about the
axis of rotation in the same configuration.

The initial values of these quantities are those for which e = f= 0, and are
V(0,0), 1(0,0), @(0,0). These all refer to the arbitrary standard configuration ;
they are therefore constants, and I shall write them V, I, o for brevity.

Let ellipticities e, f be imparted to the system, and let the angular velocity be so
changed that the angular momentum remains constant.

Then

I(e, flo(e, f)=1(0,0)w(0,0)=lo

The kinetic energy of the system is half the square of the angular momentum
divided by the moment of inertia ; and since the angular momentum is constant it
is equal to & (Lw)*/1 (e, f).

Thus the whole energy of the system, both kinetic and potential, is equal to

3 (lw)
—Vie, )+ ~2(——~.
NRAAS (OF)

If Ve, f)= V+8V, I(e, f) = I+81, the expression for the energy as far as

squares of small quantities is

§ (o)’ _
1481

V4 3T~V ~}at8 1+ §0? L)

—(V+8V)+

The first two terms may be omitted as being constant and of no interest, and the
energy with the sign changed, so that it is the lost energy of the system, becomes

2

57+ 3o?s1—par L),
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168 SIR G. H. DARWIN ON THE

Since w is constant, we may write this
’ 2
3( V+%w2[)—%w”——(8§) .
On developing this by TAvLor’s theorem, it becomes

O 0 1@ Oy z@i) Lo __ﬁ<§[ oLy
<eae+faf+2° 26 T ey T2 ) (VHE) 5t 5r)

The condition for a figure of equilibrium is that the first differentials of the energy
with respect to the ellipticities shall vanish. If, therefore, ), f; denote the equilibrium
ellipticities, the equations for finding them are

2 vl (Pt i <,
<8e Thge +f°8@8f.> (V41 iy

(Gt fap) b= a7 ] = o

Multiplying the first of these by e and the second by f, and adding them togefher,
we find

<ea% + f;;f> (Vita'l) = — [ee0§; + (%+eof)5§;7+ma—i;] (V+el)

el vzl ]

On substituting this in the expression for the lost energy, it becomes
. . 82 , 82 Lol e oF 82 oy
[?e (6—200)3—(;5 + (@”‘%“‘@of)ge—a}ﬁ s/ (/‘Z/o)gfz (V+50)
ol ol
1% [ete—2e0 (3] + 2 -eiman) G S =200 (3|
Now let e, 8f be the excesses of e and f above their equilibrium values e, fi, so

that e = e¢,+de, f = f,+8f. Then on substitution in the expression for the lost energy
it becomes

[34@0r ey 2o+ 008 —euiy st HOP P~} ] (Vb
— 3 [{(@r—e} (5L ) +2 (oetr—euty 5 S -3 (5 |

Since ¢, f, are constants, the portion of this involving e, f, explicitly is constant,
and may be dropped.
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FIGURE AND STABILITY OF A LIQUID SATELLITE. 169

Thus the variable part of the lost energy may be written
oV oI 2/ol 82V o’ 209lol
1 2 _L Lot ol
(%) I: tae <ae I<8 >>]+8 Sf[a af <aeaf 1 oe Bf):]

eh0 [ (G )}

This is a quadratic function of the departures of the ellipticities from their
equilibrium values, and the form is obvious which the result would have if there
were any number of ellipticities.

Since the condition for secular stability is that the energy shall be a minimum,
the lost energy must be a maximum, and therefore this quadratic function of
Se, 8f, &ec., must always be negative in order that the system may possess secular
stability.*

If F' is a quadratic function of n variables, x;, x,, x;, &c., so that

F = a2+ 20005 21200+ 20050, . ...
7 A N1 Ay N S
2
+ a33{l‘33 + ey

it is known that the condition that F shall always be negative for all values of the
variables is that the series of functions

O A1,  OQag |, O3,  Ogy  Oig |y oo

Oy, oz, oy ce e e (2)

Ong, oy, 33

Qg o2

shall be alternatively negative and positive.

Since we might equally well begin with any one of the variables, it follows that
Oh11, Uiz, igy... must all be negative ; also a®— Gy, @1s*— 0 0ss, Geg®— Goytls; ... must all
be negative if 7 is always to be negative.

Now, suppose that F' is the function of lost eneréy for a system with n+1 degrees
of freedom, but that a constraint destroys one of the degrees. If the system has
secular stability, the 7 determinants must have their appropriate signs, and when the
constraint is removed, the new additional determinant must have its proper sign in
order to secure secular stability. It follows that stability can never be restored by
the removal of a constraint if the system was unstable when the constraint existed ;
but stability may be destroyed by the removal of a constraint.

* This result is also given, but with less detail, in my paper on “ MAGLAURIN’S Spheroid,” in ¢ Trans.
Amer. Math. Soc.,” vol. 4, No. 2, pp. 113-133 (1903).

VOL. CCVI.—A. Z
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170 SIR G. H. DARWIN ON THE

§ 3. On the Possibility of jorning Two Masses of Liquid by a thin Neck.

This whole investigation was undertaken principally in the hope that it might lead
to an approximation to the form of the pear-shaped figure of equilibrium of a rotating
mass of liquid at the stage when it should resemble an hour-glass with a thin neck.
It seemed probable that such an approximation might be obtained in the following
manner :—-

Two masses of liquid are revolving in an orbit about one another without relative
motion of their parts, so that they form a figure of equilibrium. TImagine them to be
joined by a pipe without weight, through which liquid may flow from one part
to the other. A flow of liquid will in general take place between the two parts, but
there should be some definite partition of masses, corresponding to a given distance
apart, at which flow will cease. At this stage we should have an approximation
to the hour-glass figure of equilibrium.

In this section a special case of this problem is considered, in which the detached
masses, to be joined by a pipe, are constrained to be spheres.

If the notation of § 1 be adopted, it is clear that the system is defined by the two
parameters  and \. In accordance with the notation of § 2 we denote the lost energy
of the system by V and the moment of inertia by /. It is easily shown that

_ A oa g LN 1
(4 2,5 @, 38
V= (377P) a [(1 +)\)2 » +3 (1 _,_)\)5/3w ?

For brevity write

and let F/, &/, I, (" denote their first and second differentials with respect to \.
The equations for determining the configuration of equilibrium are

@Z_{__l_ 29{——

oV
or 2 or O\

oA

20 _

Cl)-éx—o.

0, +4

The first of these gives at once

»

3
a
o’ = 4mp <—> .

For determining the form of the second we have

2 -
V = (4mp)a’ [1«;’} +%G}, [= —%wpa{f'"%—iﬂ%(} |
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FIGURE AND STABILITY OF A LIQUID SATELLITE. 171

If we differentiate these with respect to A, substitute in the second equation of
equilibrium and give to o its value in terms of 7%, we find that the result is

3 i
%+%§-g7%+3 = 0.
Now
s 1=X ros NP1 F s TN
- (1 +)\)3a ] (1+)\)3/3: ) G’ 5(1+}\)1/3(1 +)\1/3)'

Hence the equation for determining  for a given value of \ is

1NN g
(T+N)B1+NB) ¢

a® o
poc R +3=0. . . . . . . . (3)
This cubic has ‘three real roots of which one is negative and has no physical
meaning ; the second gives so small a value to » that the smaller sphere is either
wholly or partially inside the larger one. The third root is the one required. .
In order to present the result in an easily intelligible form it may be well to express
it also in terms of the radius of the larger of the two spheres, say a,, where

3 a’

;" = .
R Y

The following is a table of solutions for various values of X :—

AL, 7/a. 7/aq. rfag — (1 + AM),
0-0 1-304 1-304 0-304
0-1 1-323 1-323 0-223
0-2 1-368 1-371 0-171
0-3 1-426 1-438 0-138
0-4 1-486 1-517 0-117
0-5 1-543 1-604 0-104
0-6 1-590 1-697 0-097
0-7 1-625 1-793 0-093
0-8 1-649 1-893 0-093
0-9 1-662 1-995 0-095
1-0 1-666 2-099 0-099

The solution is exhibited: in fig. 1, the larger sphere being kept of constant size and
the successive smaller circles representing the smaller sphere. Many of the circles
pass nearly through one point, and it has not been possible to complete them without
producing confusion.

The fourth column of the table gives the excess of # above the sum of the two radii
of the spheres, and it shows what interval of space is unoccupied by matter. Tt is
remarkable how nearly constant that interval is throughout a large range in the
values of \.

z 2
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“/"

Fig. 1. Solutions for two spheres of liquid joined by a weightless pipe, for successive values of A¥3,

In the case where the two bodies are no longer spheres, the equation corresponding
to the cubic (3) becomes very complicated. It is therefore desirable to discover
whether in any given solution of the figure of equilibrium the two detached masses
are too far apart to admit of their being joined by a weightless pipe, or whether they
are too near. This may be discovered in the following way :—

Let 7, be the solution of f'(a/r,) = 0, where

+3. . . . . (4)

f/g>_@_3_g L+NBLNE g
K?" ot PANE (LR

There is only one solution of f'= 0 between » equal to infinity and the case when
the two spheres touch. Hence we can determine on which side of r, any given value
of  lies by merely considering whether f changes from positive to negative or from
negative to positive as  increases through the value 7.

Now 1if :’—'—+ 8<%> be any neighbouring value of 7&7, we have approximately
0

a\ _ ofa® 3 1HNP4NS a)
f<¥) = 3[72 2(1+x)1/3(1+x1/3)] 8(7« :

* If we express a?/ry® in terms of ry/a by means of the equation for 7, this may be

a 9 7 A3 <a.>
a\_ 9 e T AT \sfa
f<,,,> (1 +)\)”3'<1+ a 1+)\1/3> 0 r)

3 a’

&y = —.
R Ty

written

where as before

Now the fourth column of the table shows that 1+\/”—rfa, is negative, and the
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last term inside the bracket is also negative. Hence if 8 <;i> is negative, f <%> is

positive, and vice versd. But if & <g> is negative, » is greater than 7, and the two
masses are too far apart to admit of junction, and vice versd.

Therefore if for a given solution for detached masses f <§> is positive, the masses

are too far apart to admit of junction by a weightless p1pe and if it is negative they
are too near.

When in the general case we form a function f (a/r), such that when the ellipticities
of the two masses are annulled, it reduces to the above function, its sign will afford
the criterion as to whether the masses are too far or too near to admit of junction by
a thin neck of liquid. I return to this subject below in § 13.

The solution of the problem when the two masses are constrainedly spheres is so
curious that it seems worth while to consider its stability. This may be done by the
method of § 2.

The system depends on two parameters » and M\, and the stability will depend on
three functions, which are defined as follows :—

200l o (01
;
{7 7}v 2 or Aa T I<a’)">

I w?oldl
— .1_ 2 —_——
{r, A} 67"8)\ TR SN T T v

_OV 4 b o a_f_>2
A = he'a 1‘<ax '

These functions correspond to @y, s, g of (2) in § 2, and we see that for secular
stability {», »} and {\, A} must be negative, and

A= {r,r} {, A =[{n A} ]
must be positive

Without giving the details of the several differentiations, I may s state that if we
write

F !

’7'

H = (4mp)'s’.

—

JAEY

a
so that M is essentially positive, we find

{T’T}#%G—Fg; {T>)‘}=_2¢<F’§+%G’>;
7L
2

H
2
+ ‘gG’] }

{[ F'” —;—G”<1+3£z>i| [Ff + %G] _ [F 7
& a a

S

{A A}

H

%
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From the equation

we find, after some reductions,
2 3 2

spr” +lG"<1+3ﬁ> S Ly (-
2 a2 5 a3 2 a

On substituting for F’, G’ their values in terms of A, I find that this expression

reduces to
(1___}\1/3)2 7.2
an essentially positive quantity.
On substitution in A I find
H?az ,),.2 1 __)\'1/‘3 2 ,),,2 . 1,’.2 / , 7.2 ; 2
a1t <F-a—2+§G> [X(ﬁm_gy - (g(}-ﬁgé) —_3(19'.&-2+§Gf>] L)

The factors outside [ | are essentially positive and do not affect the sign of A, and
2
it is clear that A can only be positive if ¢G'—F ;;2 1s positive. But A must be positive
2
for secular stability ; hence stability can only be secured by $G'—F 22 being positive,

and it is not necessarily so secured. But if this function is positive, so also is {7, r},
and if this last is positive the system is unstable. Hence stability is always
impossible. As a fact, in all the solutions given above {r, r} is positive, and we
should have to move the spheres much further apart to make it negative, and
therefore on this ground alone the system is always unstable. But A is sometimes
positive and sometimes negative and vanishes for a certain value of \. As the
vanishing of A puzzled me a good deal, I propose to examine the matter further.

Before doing so, however, I will show that the instability of the system may be
concluded from other considerations.

It was proved in §1 that two spheres, unconnected by a pipe, are in limiting
stability when their distance apart is given by

G

r’ = £(1+x5/3)(1 AN =8
a? A\ 5 p

This is the condition that {7, »} should vanish.

When X is zero the two spheres in limiting stability are infinitely far apart, and
when X is unity they are as near as possible, and » = 1-738a.

Now the table of solutions in the case where the two are connected by a pipe shows
that they are furthest apart when \ is unity, and that then » = 1-666a.

The removal of the constraint of one degree of freedom may destroy stability, but
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cannot create it. Hence, when two spheres revolve about one another, the opening
of a channel of communication between them may destroy stability, but cannot create
it. When two equal spheres revolve about one another at such a distance that they
could be connected by a pipe and yet remain in equilibrium, their distance is 1'666 ;
but they are then unstable, because 1-666 is less than 1'738. The opening of a pipe
between them, being the removal of a constraint, cannot make the motion stable.
A fortiori the like is true when the two spheres are unequal in mass.

Hence the system of equilibrium of two spheres joined by a pipe is unstable in all
cases. _

I will now consider the meaning of the vanishing of A.

Having evaluated the angular momentum of the system corresponding to the
several solutions tabulated above, I found it had a minimum when \? = 0:254.
Such a solution is a critical one and is the starting point of two solutions of which
one must have one fewer degrees of instability than the other. The vanishing of A
must have the same meaning, but it remains to be proved that minimum angular
momentum is secured by the vanishing of A.

The angular momentum is Jw, and is therefore proportional to w, where

_ \12 2 g, \%2
w=r(G) 36 ()

. d . ..
On equating ® to zero so as to find its minimum, we have

d\
o <F’ ;_’z + %G’> + <F§ . ga> % ~o.
Now since
§+ 1+3% g:-; =0,
we have

d_?" _ _%7. (1 "“X]/3)2 )\—1/3 (1 +)\)~—4
o 1 '

On substituting this value in the equation dufd\ = 0, I find that the result may
be written
(1__)\1/3)2 72

7 2 e ,
A (T+N)* §<gG‘Fgé> +6 %<F’ + %—(x'> <~§~G’§+ F’> = 0.

a?

The first term of this is the same as the first term inside the bracket in the
expression for A in (5). On comparing the two second terms together we see that
A = 0 is the condition for minimum angular momentum, if
2

2 2 » 2
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that is to say, if
2 2
2 (16 L4 F) + F 307 =,
a a a

or if

3
@
+
I
<
+
@
I
o

But this last is true, being the equation (8) determining the figure of equilibrium ;
hence A = 0 gives minimum angular momentum.

Since two liquid spheres cannot be joined stably by a pipe, it seems very improbable
that two tidal ellipsoids could be so joined as to become stable. Indeed, if the
distortion of the surfaces of the two masses into ellipsoidal forms may be regarded as
due to the removal of constraints whereby they were previously maintained in a
spherical form, stability is impossible.

The question as to whether or not there is an unstable figure with a thin neck will
be considered later, for the present we are only concerned with the conclusion that
there is no stable figure of this kind.

Mr. Jeans has treated an analogous problem in his paper on the equilibrium of
rotating liquid cylinders,* and has concluded that the cylinder will divide stably into
two portions. The analogy is so close between his problem and the three-dimensional
case, that it might have been expected that the analogy would subsist throughout ;
nevertheless, if we are both correct there must be a divergence between them at some
point.

§ 4. Notation.

As the solution given below is effected by means of ellipsoidal harmonic analysis,
it is well to state the notation employed. It is that used in four previous papers to
which references are given in the Preface.

In “ Harmonics” the squares of the semi-axes of the ellipsoid were

a? = /f(,ﬁ— %f—lf;), b=k (A—1), o =k

The rectangular co-ordinates were connected with ellipsoidal co-ordinates », u, ¢ by

. I*B 1+B l+ﬁ 2
= -—1—+—,—B<p2_ 1_—,?3> <I’«2" .1_:78> cos’ ¢,
= (1) (1) sint

2? Vi 1—Bcos2¢ .

2 1+8

x?
i

2
G

* ¢Phil. Trans. Roy. Soc.,” Series A, vol. 200, pp. 67-104.
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The three roots of the cubic

x? y? 2

o 4 =1
a?+u o b4u A4u

= B, wy = KRy = LB 0828

1-8
+ 1, ¢ from 0 to 2.

2

were

Lastly » ranges from o to 0, u between
In the two later papers, I put

1-8 ~ :
\ :
W=17g, K'=1-k, r=——, p=sinf;

and for convenience I introduced an auxiliary constant 8 (easily distinguishable from
the B of the previous notation) defined by sin 8 = ksinvy.
The squares of the semi-axes of the ellipsoid were then

o = k? cos® y s Kkcos?B 5 k?

sin® B’ sinfB 7 sin?f’
The rectangular co-ordinates became

2 cos’y . y?  cos’f . 2 1 . ,
Zo=I"t (1—k?sin?f) cos® b, L =-"L cos?fsin? Zo=——_sin?0(1—«"cos’ P\
¥ sin’f ( ) ¢ sin 2 k sin®*B ( 2

The roots of the cubic were

k2

. k2 4
U = S B’ uy = k*sin® 0, wu; = P(l——x“’cosng).

The notation employed for the harmonic functions is that defined in “ Harmonics.”

§ 5. The Determination of Gravity on RocnE's Kllipsoid.

In RocHE'S problem a mass of liquid, which assumes approximately the form of an
ellipsoid, revolves in a circular orbit about a distant centre of force without any
relative motion. In the present section it is proposed to evaluate gravity on the
surface of this ellipsoid. I intend to solve the problems of the present paper by
means of the principles of energy, and for that purpose it is necessary to determine
the law of gravity.

Suppose that the ellipsoid of reference, defined by w», is deformed by a normal
displacement defined by the function pf (u, ¢), where p is the perpendicular from the
centre on to the tangent plane at u, ¢. This deformation must be expressible by a
series of ellipsoidal harmonic functions, and therefore we may assume

f(iu‘s 9”) = e P (l’“) &s (‘JS)

VOL. CCVI—A, 2 A
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The typical term written down must be deemed to include sine-functions as well as
cosine-functions, and all those types which I have denoted by P, C, 8 in “ Harmonics.”

On multiplying each side of our equation by any harmonic function, and integrating
over the surface of the ellipsoid, an element of which surface is denoted by do, we
find in the usual way

|/ 9P () €2 () pdr
| () €2 ()T p o

Suppose that f (p, ¢) is zero everywhere except over a small area de situated at
the point u/, ¢/, and that it is there equal to a constant ¢; also let p’ be the value
of p at this area &o.

Then the mass of the inequality is

e =

| o (s $) s = cp/pda,

where p is the density of the solid ellipsoid which is deformed.
Next let us suppose that the mass of the inequality is unity, so that

cp/pda = 1.
Then we have

[ 70 900 () €7 (8) 1l = 0 (1) @2 () /0 = 202 () €2 ()

Hence

o WNEW)
p |10 (1) €2 ()P pdo

I now write M for the mass of the ellipsoid, and shall subsequently make it equal

to §mpa’ ——%\:}: while the mass of the distant particle will be M o gmpa’ ——

A T+N

Since Jppdo- = 3M, and P, (1) &, (¢) = 1, we have ¢, = §§V[
Thus an inequality representing a particle of unit mass at p/, ¢’ on the surface of
the ellipsoid is expressed in ellipsoidal harmonics by

T ) E ) () € ()|

pj[’rlﬁz (v) & ($)f pdo

By the formula (51) of “ Harmonics,” the external potential at the point », u, ¢ of
the inequality is

130 6) @ () + S5 B € ()1 () @7 ) BY (1) EL(D),
“ & |0 () € ()1 pdo
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But if R is the distance between the point v, p/, ¢’ on the ellipsoid and the
external pomt v, b, ¢, this potential is 1/R.

If we imagine a particle of mass M/\ situated at », u, ¢, the above expression
multiplied by M/\ is the potential of the particle at the point », u/, ¢’ on the
ellipsoid.

We have no need for the general expression for the potential of a particle situated
anywhere in space at the surface of the ellipsoid, because it is only necessary to
consider the case where the particle lies on the prolongation of the longest axis of the
ellipsoid. In this case

”
p=1, ¢=1m v=1
where 7 is the distance of the particle from the centre of the ellipsoid.

But it is now no longer necessary to retain the accents to w/, ¢, since they are
only the co-ordinates of a point on the ellipsoid.

Thus the potential of M/\, lying on the longest axis of the ellipsoid at a distance »
from the centre, at the point v, p, ¢ on the ellipsoid, is

@/ ()P (1) € (b) B () B (1) € (9)
[ () €2 () p do

For the types of functions denoted in ‘Harmonics” EES, O0S, OES, EOS,
P (1) =0, and for EOC, OOC, @ (4w) = 0. The only types for which 9/ (1) & (3=)
does not vanish are EEC, OEC; that is to say, cosine-functions of even rank.
Accordingly the functions left are 3@ for ¢ and s even, and PC; for ¢+ odd and s
even; we may however continue to allow (€ to stand for both types.

For brevity write

o 190 () @o( > %l\f 3

. (2i41)p
@ = 22 (1 ) @2 ()7 p o
Thence, since , () = 1, the potential may be written

{@o< > 12Z+1 ( >QB (1) & (3m) s (v) P (v) € (q&)} for all even values of s.

It must be observed that P and & occur as squares in TS; they also occur
twice in the numerator in the forms P, (1) P (r) and &; (Fw) & (4))

Again @/ 18 of dimensions —1 in {3, and therefore @ ) P (vy) 1s of zero
1 P

dimensions. From these considerations it follows that {37 (n) and @7 (¢) may be
multiplied by any factors without changing the result, and further that 33 (v) may
differ in its mode of definition from 3y, (x) without producing any change.

2 A2
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The higher harmonics will be considered later, and for the present it is only
necessary to consider the terms defined by i =1, s =0and s =2, s = 0 and 2.

The following are the definitions of the several functions, in accordance with
“Integrals” :—

Po(v) =1, Po() =1, ¢ () =1,
P.(v) =, Pi(p) = p, Ci(¢) = /(1 —«"cos §),
P (v) = Vz‘“%g, P (p) = p’—qd, & (P) =9 —k?cos®p (s =0, 2),

where ¢ = 3[1+FD] and IP® = 1—«"«*, with upper sign for s =0, and lower
for s = 2.
Hence

P(ECEn) =1 P(1)EEm) = (K=¢7) ¢ (s=0,2).
Then from “ Integrals,” equations (5) and (6),

T=1, T =L[DE(+3) (1267 D] (s =0,2).
Thus as far as the second order of harmonics the potential of M/\ at vy, p, ¢ is
T @)+ (5 ) 1 00) B () Ca(9) + - (=) 00°@ () e () B (1) € ()
+ @5—22@2—%’3) w0 (7 BB () €29

We must now express the several solid harmonics involved in this expression in
terms of , y, z co-ordinates of a point on the surface of the ellipsoid.
We have

P () P (1) Cu(P) = v /(1 —K" cos® $p) = % )

By the definition of ellipsoidal co-ordinates the three values of »® which satisfy the

equation
i + y + 2 k=0 are v ,1,2 1— (1 — k% cos? (ﬁ)
w?— 1 /K w’—1 T

Hence we have the following identity

S A R Y U] s

x

)w(l —k" cosz<{>——-a>21<2)
wz—l/lcz o’—1 wz ( —-l/x)(mz—l)wzk2 ’

Putting o® = 1 > (s = 0, 2) we find

Lo [,

. . . : SR RS | |
s () P’ (1) €5 (¢) = ¢.°¢." (' —¢.) [’“ I ERe ) + e P:l (s =0,2).
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Hence the potential of M/ is

i afp) o)

L se(?) 5@7(7) i
+ 'k_g' —_ @2 q02q012 ( K2__ q°2)2 — @22 q22 q212 ( K2_ 922)2
_ . . _
?/2 58 <7G—> 2 1 2 2 @/ (—> 2 1 2 2
| T W' (R g) g (g
B 5%(%) 5@, @ |
+ F @2 q0/4 ( K2__ 902)2 _I__ @22 / q214 ( KZ_ 923)2
@ ’ﬁ) 5@, f) | n
— %2_ @Ek q02qol4 ( K2_ q02)2‘ _I__ @zgk q22q214 ( K2__ q22)2 .

For the object immediately in view we only need the terms involving «, ¥, 2, and
may therefore drop the first and last terms.
~ The expressions for ¢,* and for T’ in terms of «* have been given above; by means
of these T find that

0. (KB —q¢?) _9 7 (=g _ 9 2
T. 4Dk*’ T2 4 Dx?

(note the interchange in the suffixes of the ¢’s).
. N 2,2 -
A common factor 4% ?%9;“ may be taken from all the coefficients of a? ¥ 2% and
K

since q,’q,° = §«* this common factor is equal to 15/4D. Hence the terms in #? ¢, 2
inside { } become

15 2° [ i
o @ @ 90" (€ —q0") + @5 <—Z~> 9" (' =q2)
15 2 . 7
*4—1-)"%—2 .._ Q. <‘Z‘> q,” + Q7 <%> ¢ |
152 g (1) ) - )
+4D7C—§L_ @2(76}%3 (K QO) @4 lc)qzz (K Q2)_"

On substituting for the several coefficients their values in terms of «, I find that
the potential of M/\ may be written in the following form :—
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a5 § 1700958 e
14 -(-) B (@@
uﬁﬁuﬁﬁz%+ﬂaﬂwﬂ} )

It may be observed that this satisfies LAPLACE'S equation, as it should do.
It remains to obtain approximate expressions for the @’s.
The expression for these functions is given by

dy
D)), FROH s

We require these when », which will be put equal to #/k, is large; thus we must
develop in powers of 1/v.
Now
(1) (P =1 /)12 = 1 [1+ 1+x* 3+2K2+ 3kt 543K+ 3k + ks :l

:HOES

it +...].
2 2 K2V2 23 K4I/4 24 K6V6

Since 3P,(v) = 1, we have by integration

6k’ + 40k Tt + 11248 e

N\ 2 2 2 4 4 2 9, 4 6 6 .
@06{;):!{;[1 1+« k 34+2k°+3k* k| 5437+ 3k*+ 55 K +} ).

There is no immediate need for this term, since it has been omitted above, but it will
occur again hereafter.
Since 3P, (») = », we have

'\ BT, (1) . 3(34 24 3 ] ,
3@1(> T[1+ oz 2t o Gt (8)

Lastly, since ,°(v) = »*—q/x*, we have

— 2 s, 9(s
o) = L1 2+ 2] 5= 0,)
so that
1
[ () (= 1) 2 ("~ 1 /)
1 146 | 20°\1 (3428436 (146)q2 | 3¢.5\1
=—6[1+< .+ q>;§+< 3 (1e)g +—7(11—>;1+...](s=0,2).

v 2k’ K2 8k Kt

If we integrate this, multiply it by 13, () and write »/k for », we find,

r 5 (1+x%) 3%}]62 {3+2K+3K 5, qb} J =0,2) (9
5%() [J’{ e TrelP Ol e 26k 2lx ¢ ) )
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On substituting for g, its value, I find
5®28<]%> lc?’[l + 71+ F2DF 5{11+10K +11*F4(1+«*) D} & ]

1442 7‘2 168«* o
‘Whence
2B, 1+ K | 5 (11410 +11x) At
5 2 = —_ s —eee
@+ = [” 22 2 1681 ek
sr-ai - - LE, w0k ]
D 24T 8 7K 1 168 7

Substituting these values in (6) we have for the potential of M/\ at the surface of
the ellipsoid, as far as concerning terms involving x, y, 2,

{3@1<> o k3[1+3(3+x2)lcf+ (5+ 2+ ) I ]

ke R 142 2 56 k" P
7 l_cf’[ L3(L+3K) K 5 (52 41) I ]
o »® 14?22 56k* P
22k 8(L+k) K | 5(3+2k°+3k*) k* :I}
. [1 +20EA L 23OE N o)

If the system be rendered statical by the imposition of a rotation potential, we
must add to the above such a potential, and that of the ellipsoid itself.
The expression for the internal potential of an ellipsoid », is given in (65) of
“ Harmonies” ; it is
ﬂ {@0 (Vo) x Qll (Vo) @1 (V ) 2 @1 (Vo)}
Po(m) BPI(m) FPS () £ P ()]

I will now introduce an abridged notation which was used in some of my previous

papers, as follows :-

Pll (Vo) Qll (Vo) = Alla 1911 (Vo) @11 (Vo) = glla %1 (Vo) Q, (Vo) = Q..
Then, since
1

P o) = 4/ (= 5) P00 = V0i-), Bl =m
we may, on omitting the term independent of «, y, 2z, write this potential in the form

ok [k2(v02-—1/:<2)A1+k2(vo2—1)gl+k2vo2gl SRR L)

The rotation with angular velocity » takes place about an axis parallel to 2 through
the centre of inertia of the system, which consists of two masses M and M/\ distant »
from one another. Hence the rotation potential is

3ot | g (L) _§Z‘_f{£7c_3<yz+z_2 _o_ ok g} ¥
e [y+<z 1+>\>}“ 2k 130\ & \ Saana B ey (12
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The last term, being independent of x, ¥, z, has no present interest. Then, collecting
results from (10), (11), and (12), the whole potential, as far as material, is

Vs e ) -y

x? {AllJrvO?—l/K?[cf[H3(3+K2) _k_‘j‘+ 5 (542 +x*) K M

ACES) v AL 14l P 56kt T

oy { 17&[ (324 1) K | 5 (5K 26+ 1) & ] W’k _}

B (v —1) A ~)\ r® L+ T 27 56x* PE (0 1)
20, kP 1+ E | 5(8+267+3k*) £ 2k?

e m s e O |- ]

The condition that the figure of equilibrium should be the ellipsoid of reference is
that this potential when equated to a constant should reproduce the equation to the
ellipsoid. The coeflicient of z must therefore vanish, and the three coefficients written
inside { } must be equal to one another. These conditions give the angular velocity
and equations for determining the figure, but as the subject will be reconsidered from
a different point of view hereafter, I do not pursue the investigation here.

At present it need only be noted that the coefficient of z vanishes, and that the
three coeflicients are equal to one another. It is clear then that the potential U/ of
the system, as rendered statical, may be written

1/K2k3[1+ (3+K2)7_6_2+5(5+2K2+K4)7~64: :]}
3n 7 14k*  #* 56" ot

U= ——{All+

a}.Z ’ y2 z2 }
8 ‘{k =17 T B i=1) " Bl

Now gravity ¢ at the surface of the ellipsoid is —dU[dn, where n is the outward
normal to the ellipsoid.
Hence ‘

_[ pe_ 33U, py 23U, pz SU]
Fo—1) o B (ni=1) oy | Ky 0
Now

1 m2 2 Z2

2= Y
]02 T (v02— 1/1(2)2 + iz (VOZ-— 1)2 + vt

and in our alternative notation

, s 1 _ cos 0%
" T T sin? B
Therefore
SM{ 1, Kcos’y L 3(8+K*) K | 5(5+2°+KN) K ]}
= — N 8 9 N ) —— i T2 XX . 1 .
g pk A1+3M'3sm2,8 Iy —ge »7 56k A (18)
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As already remarked, we shall put M = gmwpa’ I% ; also, since the three axes of

the ellipsoid are k cos y cosec B, k cos B cosec 8, k cosec 8, we have

3

K cos Beosy _ Aa
sin® B L+N

Hence
k*cos’y _ a’cosytan
3\* sin® B 3(L+N)

and the coeflicient of the series in the expression for g does not become infinite when
\ vanishes ; however, it is perhaps more convenient to leave it in the form as written
above.

This expression for gravity is the result required, but it is to be noted that it is
determined on the hypothesis that the distant body is a particle or sphere instead of
being an ellipsoid.

The development ceases with terms of the seventh order, and the harmonic terms
of third and higher orders have been neglected. Now the harmonic deformation of
Rocar’s ellipsoid of the third order of harmonics is of order %*/r* in inverse powers
of 7. This deformation is treated as surface density. If we were to proceed to closer
approximation, we should have to take account of the square of the thickness of the
layer ; such terms would be of order £*/»®. Since, then, we are avowedly neglecting
terms of this order, it is no use to carry the development higher than terms of the
seventh order.

§ 6. Form of the Expression for the Gravitational Lost Energy of the System.

The system consists of two ellipsoids, say e and E, with their longest axes co-linear,
and each of them is distorted by deformations expressible by ellipsoidal harmonics of
orders higher than the second. To the order of approximation to be adopted these
deformations may be replaced by layers of surface density, which may be denoted by
[ and L respectively. '

The lost energy of the system may be represented symbolically by

V==%(e+l)+i(E+Ly+(e+!l) (E+L).

Let s, S denote two spheres of masses equal to e and & and concentric with them
respectively.
Then the whole may be written

V =4eetFEE+eE+§U+5LL+ (e+S)I+(E+s) L
+(e—s) L+(E—-S) I +IL.

In the term SI I divide S into two parts, namely S;, which is to contain all the
VOL. CCVI.—A. 2 B
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186 SIR G. H. DARWIN ON THE

terms in the potential of S at the surface of e excepting terms expressible by
ellipsoidal harmonics of the second order with respect to the ellipsoid e ; and S,, which
is to contain the omitted terms of the second order. Similarly, the term sL is to be
divided into s, and s,L.

Take the centre of e as origin of co-ordinates «, y, z with the z axis passing through
the centre of K, the y axis coincident with the mean axis of e and the « axis coincident
with the least axis of e.

Since 7 is expressible by harmonics higher than the second order, and since 3*+2?
is expressible by harmonies of orders 0 and 2, it follows that the moment of inertia of
the layer / about the axis is zero. If therefore o is the angular velocity of the system,
a contribution to the lost energy of the system which may be written symbolically
[$o (y*+2°)] 1 is zero.

It follows therefore that we may write

(e+8) 1 = [e+ Syt Lo (52 +2°)] 1+ Sil.

Similarly, if the ellipsoid E be referred to a parallel co-ordinate system X, V, Z
through its centre, and such that

x=X, y=Y, z=2+r,
so that » is the distance between the two origins, we have
(E+38) L = [E+s+%0" (Y?+2Z7)| L+s5,L.

The problem is already so complicated that it will be convenient to omit certain
small terms in the expression for the lost energy, which it would be very troublesome
to evaluate.

The term (e—s) L represents the mutual energy of the departure from sphericity
of e with the layer of surface density L on . This term is clearly very small and
will be omitted. Similarly (E-S){ will be neglected. It will appear from the
results below that these terms are at least of the seventh order in powers of 1/r.
A fortiori 1L, which is at least of the eighth order, will be omitted.

The whole expression for V will now be divided into several portions.

Let (eE), be that portion of eF in which each ellipsoid may be replaced by a
particle ; it is, in fact, the product of the masses of e and K divided by .

Let (eE), be the rest of el

Let (vv) denote that portion of ¥ in which the larger body £ may be replaced by a

sphere ; then
(v0) = feet+3ll+[e+Sy+do’ (y*+2°)] 1+ S,

Similarly, let
(VV)=LEE+iLL+[E+s+40” (Y?+2Z%)| L+, L.

Then V = (elf),+ (el)y+ (vo)+(VV)+ neglected terms.
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For RocuE's problem, when the second body is a particle, V reduces to (eE),+(vv),
but in the modified form of the problem which I am going to solve the whole
expression is required. .

The evaluation of (¢E) is so complicated that I devote a special section to it.

§ 7. The Mutual Energy of Two Ellipsoids.*

The semi-axes of the ellipsoid of mass e are to be denoted a, b, ¢, and the
corresponding notation for the other ellipsoid is &, 4, B, C. The distance between
the centres of e and K is1; the axes ¢ of e and C of K are in the same straight line,
while @, 4 and b, B are respectively parallel. For brevity I imagine the densities of
the ellipsoids to be unity.

If the external potential of e be U, and if d€) be an element of volume or of mass
of E, the lost energy to be evaluated is

(eB)= [vdo,
integrated throughout the ellipsoid £.

Let us suppose provisionally that the co-ordinates of the centres e and ¥ are «, v, 2
and X, Y, Z, and let &, m, { be the co-ordinates of the element dQ; the axes being
respectively parallel to a, b, ¢ or 4, B, C with arbitrary origin.

If B? = (§—x)+(n—y)*+({—2)% it is well known that the potential U of ¢ at the
point &, 7, { is given by

U=e$ 5 < o b2~—+ ag>”
o (2n+1)(2n+3)2n! 852 8{

~Since - satisfies LAPLACE’S equation, we may eliminate and observing that

E e
2 2 2 2
.2 are the same as o &z respectively, we have

da?’ Oy o€ oy’

o2
2 2 e — (2N Y (22O
@ é?'*’b é"gz_ (C a’)agz (C b)anz

__p| L _ai]
= k[xzaa;2+8y2 ’

U= (=) I <1_ai+_52_>"-_
o(2n+1)(2n+3)2n7 Ko’ oy’ R’

1t follows therefore that

Since the operator is independent of &, 9, {, we have

(=)3 o (L, @ > jd(z

(<E) —-62(2n+1)(2n+3)2n' \Kz ox’ +5?—/—2 R

* The results of this section were arrived at originally by a longer method. I have to thank one of the
referees for showing me the following procedure.—February 26, 1906,

2B 2
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188 SIR G. H. DARWIN ON THE

But j% is the potential of the ellipsoid £ at the centre of the ellipsoid e, and by

an exactly parallel transformation

_di)’,_ o (__)n3 2n<1 82 a2>n
jR B E2(2n+1)(2n+3)2n71(’ K? 0x? +6y

where p* = (= X)*+ (y— Y )+ (x—Z)~

Since our co-ordinate axes have a perfectly arbitrary origin, we may at once put
X=0,Y=0,Z=r2z=0, and after effecting the several differentiations put z.= 0,
y = 0.

It follows that, on putting « =0, y =0, after differentiation and writing
Pz — w2+y2+r“’, ‘

By XS (LE BN N (1, o

0 (2n+1)(2n+3)2n!" \K¥0x* O 21+ 1)(2¢+3) 2! oy
1 82 o’ 1 1o, @ 2
If we denote the operator a3t o by d?, and the operator g o7 by D?,
we have
N o L7 _i 2d2 + 474 616
(eE)—eE[l R Sy w2 8 ]

T 1 :
11— K22 < T sps. |
|1 55 KD gy KD 2433571Q J,o

- eE[ - 2_1. (Fd?+ K*D?) + 7 L (kdt+ KDY+ L KEdD?

22 5*

g B+ KIDY) = b (PKAED! +HKADY).. ]n

243357

On effecting the several differentiations, and putting = 0, y = 0, we find

1 1/1 1 3/3 2 1. 8/ 3 1 1

1_ 8.5 1 32.5/5 1 2 2
df L = 5); dD*= = — -5 5
p T7<+ +5 +> P 7~7<K42+ it TS +K+)

and the remaining functions may be found by appropriate changes of small and large
letters.

If now we again use p to denote the density of the spheroids, and revert to the
notation employed elsewhere, namely,

s 1

1T4M°

ol

e = 7Tpa;

=S

A
3_ =
mPY 1 )\ B
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we find

(e8) = (v 1y {1+ g | (3 +1>+’<2< )]
rele(ide sl o]
»225”[ K+ [+é2+3>]
)

+———9—[k21Q‘< 0 +i4+—2——+ 2 +1+5>

245,777 K’K* K K2
704IG<TK§ + L L+ 2?{2 +2 5+ Iiz + 5>]} (14).
The first term in this expression is that which was called above (eE),, and the rest
constitutes (e£),
If the body X were a sphere, the only portions of (14) which would remain would
be the parts of the expression independent of K,
With the object of effecting certain differentiations hereafter, it is desirable that

the formula for (e£) should be expressed in terms of the semi-axes a, b, cand 4, B, C.
In accordance with the notation used elsewhere, we have

_ kcos 'y k cos B k . .
b= = — h =
Sm B Sng ¢= 3’ where sin 8 = «ksin vy,
K'COS F, B = &—-@-S—E, C= K‘ , where sin B = K sin I.*
sin B sin B sin B

The result of the translation into this other notation is as follows :—

eli) = (3mpa’)’ A 1+ L [2¢?—a*—b*+ same in 4, B, C]
PEI N L T 25

+ 53-53—"77;,[3(0&% bY) + 8¢t —8¢2(a? +b%) + 2a7b* + same in 4, B,C]

+ ?—% [2(A4%2+ B+ C*F) + (A*+ B+ C?) (&°+b°+ ¢*)
~5C*(a?+1?)— 567 (4% + B?)+ 5C°¢?]

+ -2—;—3—}—77:7 [16¢5—5 (a®+b%)—24c* (0’ + b%) + 18¢* (a* +b*)

. —38a%b* (a®+b%) + 120°b** + same in 4, B, C']

+3 7 [ —A*(5a*+b*—6¢%)— B* (a* + bb*—6¢?)
—8C" (a?+b*—2¢%) + 4 B*C*(0*+ 3b*— 402)
+4C%4* (302 + b2 —4¢%)—24°B* (0° + b° + 2¢%)
+ same with small and large letters inter-

changed]} R ¢ 1))

* The fact that capital 8 is nearly the same as B must be pardoned; it cannot, I think, cause any
confusion. '
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§ 8. Remawning Terms in the Expression for the Lost Energy.

If ¢ be the mass of an ellipsoid of semi-axes a, b, ¢, the lost energy of its
concentration is '

where

¢ = f ’ du
- 0 (u+a2)1/2 (’LH— bZ)l/Z (’LL+ c2)1/2 ‘
In the present case

A
—anas M
¢TSI
and
_2( dv
. b= 70_ I,,o (y2.—. 1)1/2 (V2— 1/K2)1/2 >
where
v, = L _ 1
T ksiny  sinfB
Thus
XZ
% (ee) = 1% (%ﬂpa3)2m¢ (16)
By symmetry
B =6 G (g (17),
where
_2(" dN
V= KJM (N?__ 1)1/2 (N2__ 1/K2)1/2' P
and

_ 1 1
7" KsinT' sinB’

The lost energy (1S)) is the potential of a particle S, equal in mass to ¥ placed at
the centre of K, with the omission of terms of the second order of harmonics,
multiplied by the density of the layer [ and integrated over the surface of e. This is
the same as the potential of the layer /, with the omission of harmonic terms of the
second order (and there are none such) at the centre of £ multiplied by the mass
of I. ' '

A typical term in the surface density representing the layer [ is, say,

SW (p) € (9).

The external potential corresponding to such a term, at the point », u, ¢, is by (51)
of “ Harmonics,”

% (‘%vrp&s 1—-);~—)\> Si@: ()P () P (1) €2 (9)-

The co-ordinates of the centre of £ are v = —, p =1, ¢ =§m; and the mass of £ is

k
$mpadl(1+ A).
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Hence the contribution to (1S;) corresponding to this term is

ERNY)

(e} @ RV ()2 (1) € )

Now (1) €/ (§w) vanishes for all harmonics except cosine-harmonics of even rank.
Therefore '

(8) = F (imo) (g S AR Begwe ) [ S am [T 05 ),

~ the summation being for all values of ¢ greater than 2, and for all even values of s.

The lost energy (Ls,) is expressible by the similar function for the other ellipsoid,
but I have not adopted a specific notation for the ellipsoidal harmonics for the
ellipsoid %, and therefore cannot write down the result.

The lost energy (e+S,+%w?(y°+2%))l is the potential of the ellipsoid e, together
with the potential of S in as far as it involves harmonics of the second order, and
a rotation potential, multiplied by the density of the layer /, and integrated over
the surface of e. That is to say it is the potential of gravity on the ellipsoid e
integrated throughout the layer /, which it is not permissible to regard as surface
density.

If the thickness of the layer be , and if d{ be a slice of that part of the layer
which is erected normally on an element do° of the surface e, then pd{do is an
element of mass of the layer. The potential of gravity is —gl. Hence the lost
energy is

~p[lgtdtdo = —3p [ grdo.

Accordingly the lost energy is equal and opposite to the work done in raising the
layer, considered as surface density, through half its thickness, against gravity.
We may take as a typical term

{ = pfiPd (W) € (4),
and we have shown in (13) that

84 4 A { ., B cosz'y[ 3(83+i®) k* | 5(5+2:7+ ) & ]}
L A T 1 il oL
g pk sTPY TN Al+ 3\ cos? B * 146 72 + 56" rt

It should be noted that this expression for gravity takes no account of the change
in the ellipticity of e which is due to the fact that £ is an ellipsoid and not a sphere.
The error introduced thus is however outside the limits of accuracy which have been
adopted.

Accordingly this portion of the lost energy is

% 4mp’a? 1——:}}—\ (/e { A +series} f (8 () € ($)F p do
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Now in § 5 we defined

T = ZE&% [ [P (n) € ($) P p do.

Hence

(e+So+30° (v +2%)) 1 ——-%c(fonrpa) (1:2 ik .‘(Zz+)1 {A+series} T’ . (19),

the summation being for all harmonics.

In determining the lost energy 4(I) we may treat the layer as surface density.
A typical term in the surface density is ppfi: (1) € ($), and the surface value of its
potential is

3 (dmpa) T S () @1 ()P () € ().

Then, since

: =1 (Vo) @is(Vo),
a typical term of §(I/) is

SZ(% Pa’) 1y +)\(f )@ [ [P () € ()P p do.
Thus

) = & ey e igfaT o)

the summation being made for all harmonics.
The value of & (LL) may be written down by symmetry.

§ 9. Final Expression for the Lost Enerqy of the System.

‘We have
V= (eE) + (v0)+ (VV)+ (eK)..

The several parts are to be collected from (14) or (15), (16), (17), (18), (19), (20),
and we have

(k) = (%wpa3>2m%§;,

(w) = (§mpa’)’ (—1—%7 {-1%)\1[; 3@ (w/k) P (vo) P (1) €5 (37)  (1>2, s even)

(frTs I: A k? cos® y < 3(3+K") K 5(5+24 +K4)k4>:] (all }
J”’lc2 20+1 e 3\? sin? B M e 2T e harm.)

(VV)= symmetrical expression with 1/\ in place of \.
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(¢B), = (3mpa’) (1}_@{.2_%?[70 (Z1)+ k()]
2357T [lc“( + 2+3>+1Q( +%+3>]
+-2—2%—2;5k21€< fl’{z+é2+ L +3> |
:+—27_é1.—7¢;~7[k<5+3+3+5>+&< §4+3+5>}

9 JB 1 2 2 1
+24.5.7r7[k216<_éﬁ1+—’*+ 2K2+K2+K2+5>

2 2 1
k41€(F4+ +K”+ +K2+ 5>:|} (21).

§ 10. Determination of the Forms of the Ellipsoids.

We have obtained in the last section the expression for V, the lost energy of the
system.

The harmonic deformations of the ellipsoids being of orders higher than the second
do not enter into the moment of inertia to the order of approximation adopted.
Hence the moment of inertia about the axis of rotation, which passes through the
centre of inertia of the system, and is parallel to the @ and 4 axes of the ellipsoids, is
given by

— 4 3| 1 2 2 2 9 \r? ]
[ = tmpa [51 (" +e) +h s (B4 Oriny) @
If f denotes any one of the parameters by which the system is defined, the
condition that the figures shall be in equilibrium is

oV 4 .0l -
Y i1 =0,
oF T

The parameters defining the system may be taken as », the distance between the
two centres, cosy, cos 8 for the smaller ellipsoid and cos I, cos B for the larger one.
Besides these we have the coefficients f, F of the harmonic inequalities of order ¢
and rank s on the two ellipsoids.

For convenience write
a=cosy, b=cosp.

These letters are chosen on account of the association of cosy, cos 8 with the
semi-axes a, b of the smaller ellipsoid e. It is unnecessary to adopt a corresponding
notation for the ellipsoid X, because, when the problem is solved as regards e, it
affords the solution for £ by symmetry.

Since
k? cos B cos y cosec® B = Na®[(1+\),
VOL. CCVI.—A. 2 ¢


http://rsta.royalsocietypublishing.org/

I ¥

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Vo

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

194 : SIR G. H. DARWIN ON THE
we have
L < \1/3(1 h2)1/2
Hence a AL+ (ak)® -
g_@cos;x_( A >"3§t_2_/f _lz_lc_cosﬁ_( A >‘/3ﬁ3 c_ k. _< by )1/3 1
a asinB \I+M ¥ a asinfB \l+N a? a asinB8 \L+N (ab)”
Therefore :
jda_pdu_db  odb_ _da, oy de_ _da_dy
a a b b a v’ c a b
Therefore
RN N BT R RS
3&—95—2068—0; bab Cac, 3haﬁ—— aaa+2bab 055. . . (23).

These enable us to differentiate, with respect to &, 1, functions expressed in terms
of a, b, ¢; the parameters », f; always occur explicitly.
The equation of condition for the parameter » is
oV 4 0l
EZREREE
On differentiating (22) we have

128]_4_ 3)\.0)'}"

= 0.

2o T ST Ny
In order to differentiate V' we must take separately its several portions as defined
in (21).
Now

- 5B = (v} g

- '5,’7 (vw) = (%77;)&3)2(1—1‘—)\72 { -3 S P (w)PE(1) €7 (37) di Q; <Z> (+>2, s even)

o2 o ([ TS cos® y[ 5(3+«k’) K 5 (542« +K4)k4 }
+2742 2t+1 sin®f + 144 =l 56k* fr (allharm)

- E‘%(VV) = symmetrical expression for larger ellipsoid.

_“a%-(eE)z: (smpa’)’ (14)5\)2{2 51 [ 2< +1> +K2( )]
+—2Tsﬁ{_k <3 +5 +3> +1(“< I§3+3>]
P (i i)

+—1—~Jk <5+3+:":2+5>+K‘f< £4+3+5>]

2437
9 5 1 2 2 1

2 2 1
+k4I€<K2 4+1 TR +K2+5>]}.
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FIGURE AND STABILITY OF A LIQUID SATELLITE. 195
The sum of these last four expressions is equal to —9V/or, and therefore equal to
Lo’ oIfor.
Now let

' = %ﬂpag (1 + {),

so that { represents the correction to KrpLER'S law of periodic times on account of
the ellipticity of the two bodies. Then we have

(=12, [y( +1)+1<?< >]+£_[k4<3+2+3>+1<4<3+§2+3>]
20% 2Kf(9Kz I;ﬁ +3> I 6[k6<K+ +5 +5>+I€<%+%+%+5>]

9 [k2]<‘f<,.5__+_}_+._2_+2+ +5>+7(:4K2< +14+ 2 +2+1+5>]

80 ,’.6 K2K4 K4 K2 K2 K2 K2 4 K2 2 K2
=2 o) B () €2 () @2 (7)) (72,5 even)
o (fFY TS cos? 'y{ 5(8+«%) & } .
9 B
+ 3 722 511 s 1+ e E e (all harmonics) . . . . (24)

When @/ (r/k) is developed in powers of 1/r, its first term is one in #~¢*¥; hence
7? 8% @ begins with »™". Now f; will be determined from terms in the potential of

the ellipsoid & of the 1™ order of harmonics, and will therefore involve 7~ ¢*.
Therefore in the series contained in the last term but one of { each term is of order
r~ @+ Since the lowest value of ¢ is 3, the term of lowest order in this series is one
in 777, and as I shall not attempt to evaluate £ beyond »~° the whole of this series is
negligible. '

Again, since (f;)? is of order » %72 and since 7% occurs as a factor, each term is of
order »~#7%  Thus the lowest term is of order »™** and is negligible.*

It follows that the only sensible part of { arises from the portion of V' denoted
(eE),, and the last two terms of (24) may be erased.

We next consider the parameter f, and, since I does not involve it, the equation
reduces to dV/dff = 0; or, since V only contains f; in the part denoted (wv), it
becomes o (vv)[of; = 0.

This gives, for +>2, s even

= 1 (2i+1) @/ (’“/’c>}9i;()”°)193(1)3@§§;) . (25)
Ws{gs—Al I snfzg[H (14K2)T~2+"']}

Since this formula contains \ in the denominator, it would appear at first sight as if

* Tt is proper to remark that the terms retained in ¢ are really of higher orders than they appear to be.
I recur to the neglected portions of { hereafter in § 23.
2 ¢c2
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196 SIR G. H. DARWIN ON THE

Ji became infinite when A = 0. But this is not so, because when @ (/k) is developed

the first term of the series is one in (k/r)™*'; now £* = 1%\&3 sin® B8 sec 8 sec y, and
therefore the formula for £ involves the factor ()" % or (A7 1
erefore the formula for f involves the factor \1+)\> . or 1+)\> T

We see then that f; vanishes both when X = 0 and \ = oo,

This factor is & maximum when X = §(¢—2). Therefore we should expect, cateris
pambue the third harmonics to be most important when \ =4, the fourth when
A = 2, the fifth when \ = 1, and the higher harmonics when X is greater than unity.
This prevision is partially fulfilled by the numerical results given below, but it was
not to be expected that it should be exactly so, because the other conditions are not
exactly the same in the solutions for various values of A. . o

The formula shows, as stated above, that fF is of order »™*, The series in the
denominator affects the result but slightly and might be omitted, except, perhaps, in
the case of the third zonal harmonic. For all harmonics other than cosine-harmonics
of even rank £ is zero. '

It is now possible to eliminate f* from (vv) by substituting for it its value. These
terms in (vv) become, in this way, equal to

N {_2i+1[ ()19 0) s ()@(2”)}} (26).

(L+A)? 2kN T’ [4:— A, —series ]|

&

(mp

When ¢ = 3, this term is of order »7% and is negligible; hence we need no longer
pay any attention to the inequalities on the ellipsoid. However, the formula (25) is
important as rendering it possible to evaluate the inequalities.

Since for all inequalities, excepting cosine-harmonics of even rank, f; only oceurs
in the energy function as a square, it is in these cases a principal co-ordinate, and
(@s—-Al —semes) is a coeflicient of stablhty .

But the like is not true for the cosine-harmonics of even rank, because, when we
consider, for examplé, the harmonics of the third order, we see that o*V/dfydr is of
the fifth order and *V/[of;*ou, O*V/[ofiob- (s = 0, 2) are of the fourth order. -

It is clear that the inequalities on the ellipsoid & are determinable by symmetrlcal
formulse.

We must now turn to the equations of equilibrium for the parameters a and .
Since differentiation with respect to these parameters is effected most conveniently
by means of the formulse (23), the portion of V called (e£), should be written in the
form (15). After effecting the differentiations it is, however, best to revert to the
notation involving k, k, v, K, K, I'; but as an exception to the general rule as to
notation, it is most convenient to retain the differentials of &* (1+1/«%) and of b°+¢* in
the forms 1nv01v1ng a, b, c. As the algebraic processes involved are rather long, I
simply give the results, as follows :— *
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o :x. gUIS :I.av\+~‘xoﬂv|A~+mv:.uv mL_v ¢ —

) :x. FUIs A*xm.,lmx._rﬂlemx._. ﬂv mw.. e —

A uts 3.
A s (c— 4+ 347) (M4 1) e—] B2
s (¢ =g+ 2) + (21 + 1) =]~ 0
, S A urs 3 )
[(4 5ms 2 =) (e +38 + 1) = 4 J0s (S48 +¢) == - 7 oures al;m
- 71810 p
A s (=1 +01) + (> +¢) “_x. g 118 ¢ 3y +
S (=701 &= mV?oﬁw
_ | ) ‘
[Ams (e +,3a+ 1) 27— (A s g—€) (M +, Mz +¢)—] % Tmmzwﬂoa@pﬁ 05.Ie[ pUe [[RWS M OUIEs +
. ¥
P S 7]
O+W+wmn+wm + s vv%m_lwmm
. Auts; 3>
) Tl o)~ (e =) (14oie) e = o g
- Awis, gy S Bp
‘(A [As (e + 1) 7 —(Amsg—g) (M +e) -] K2 Am+ pud g o vvilﬁm
MG T 1
A quis .
1) [A s (= 0+ 16 +H01) + (1 + 5 +7) £ — = = oures alfm
9
. A ats I A\ Bp
¢ _ - R DA St A S =P
(a1) = [A gms (g =0+ g +01)+ (25 +¢) g =] —2 = s+ S5 o) s
A Jats
) e [ gms (g—pr+19) +(1+7g) g—]—H= = owws Wﬁa
v A juis
() o [A s (rg—pr+0) (4 8) e -] = Am+ + mvﬁﬂmm

01 ‘A ¥ ‘y Jo suwre) ur possexdxe oIv s[Nses Sururewor 9Yy,

ALIIOOS g\ oiovsnval

Y TVAOY 9H L 1IvDIHIOSOTIHd

() (pa—ga—) & = « I+ Lm\lam

¥
() (286—P3—:Q) & = A v Q\Iﬁm

ap
p

P

(D) (2—298) 3 = @J@:Iﬁ >

() (P+9 35— = @iélﬁm

r

4
|
d

ALIIDOS gyorovsnvaL

)_<>OM dH L 1vDIHdOSOTIHd



http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

198 SIR G. H. DARWIN ON THE

On picking‘ out the numerical coefficients of the several terms in (eE), as given in
(14) or (15), we see that

d o, _ Gmps®X[1GH) 8 (ii) | 3(v) | 1(iv) 9(v1)}
38 g (eB) = Sy {2.5a»3+23.5.7q» o7 5% | 2Ly on b

3{1%(@)2: CoL (Y. L GEY . L (). L Y)Y, . (vi)
B

2

Observe that ——— = —— = ¢, and write
K’sin’y  sin® B

_ 3 Ksmy K*sin’y KSlIl’)/
~ (“1)'*22 e ) argae 247 : () (27)

o= . .. () Y (2 AR ¢ ') A (6 ¢

Then we have

3)\2 A 1 2 2__ 9,2 1 .2
a2 (eE), = (4mpa) m[ﬁ'ﬁ (-20t=2¢) 4215 Tc] 1 "
.sﬁ— (¢ = (tmpa'f 3>\)2['5%~‘5 (a2—2l)2—202)+31;-3.0"02] J

The terms in V denoted (e£), and (VV) do not contain a, b, ¢, and their
differentials with respect to a, % are zero; also, after omission of the terms in f,
(vv) is reduced to

(w) = 37TP3) ) T
Hence
3aga(vp) (f‘ﬂno&a)2 Y [ ( é’l‘p a_lll‘ '819]
B (vv) = (e.moas)” J): [ ( éi ﬁ Cg‘o—ljﬂ
Now

ag—g ="z Pll () Qi (v) = ““;%All’
pY _ _ = —
ab —-331 (1/0) @1 (Vo) = "‘gl ’

oV
ac 191 (Vo) Q. (Vo) = -7 gl

Since ¢ is homogeneous of degree —1 in a, b, ¢, the sum of these three is equal to
—1, so that
A3+ A = 3y
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FIGURE AND STABILITY OF A LIQUID SATELLITE. 199

Therefore

d 3\
3= (vv) = —(3mpa’)’ =7 (BAl—3hy),

_—L .
(L+X) (29).

d (4,3 ___)i__,_‘?z‘ -1
o 5 ) = s (e G 08 =09, |

On adding together (28) and (29), we find

av _ 4 2 A [ 3\ Al_1 1 s 2 a 2]
5 da (37pa) (L+MPL 5k (3AL—2hy)+ 57° (V*~20* =2 +7¢%) |,
AV _ (e oma_ M [_?’l‘ 1_1 A r_op_9s 2]
3t i (4mpa) TP L 5 (3 — %)+ 5T3(a 20°—2¢°+ oc?) | .

By means of (i) and (i)’ we find the differentials of the moment of inertia I;

1ey are
d.l — _4 3 )\ 2 (12 9
BT TP T B0+,
dI_ 4 3 )\ g_ 2 2
3hgﬁ = 37Tpa —'—1+x- 5(2b 0).

Then, since 4o = $mpa’. 5};—5 (1+2),

dl A 1 2 '
fofa g = — (%WP3»3)2(1+>\)2' =5 (LN (1+) (0 +¢7),
8 dI _ 4 3\2 )\ 1 2_ 2
gwghzl—ﬁ- == 371'[)8: ) —-———~(1+)\)2--——-—57’3 (].+)\.) (1+Z) (2b C).

Now the equations for equilibrium for the parameters a and  are

dI _ o AV 40l _

ﬂ+%w2

da 0

Therefore

— 3N (3A — L)+ ;{%[1)2—2#—20%702—- (1)) (1+2) (B*+¢*)] = 0

(30).
SN (BB + Bt — 2t 20t ot (L4A) (140) (26— )] = 0
Subtracting the second of these from the first and dividing by 9\, we have
@A = [ (L) (1) =3 —o)] . - . (8D)
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200 SIR G. II. DARWIN ON TIIE

Since we may write 3A'— {k in the form — (&' — A,") — (A, — A.'), the first of
(30) in combination with (31) gives

B Al = o b2 (1) (140~ 4 (2rt0)] . . . (32)

Referring to the values of 7 and o in (27), I find

1 5 k2K12 ](4 /2

—hr—o) = 45 B

[2—8 (L+K°) sin®y]|+ [_4 (1+1*)— (5+ 6K+ br') sin® y |

+ 1% pere [2K” cos® y—«'? sin® y (14 3K?)]
"+ 395 ”/'TK—(i [4K’2 (1 +K2) cos? ‘y—K’2 sin? v (]_ +9K24 5K4)]

BK®

S5 s [4 (1= KK?) cos® y = sin? y (L + 1+ K2+ 56°K?)

. .2 B
-5 (27+0) = —f%i»qé_’KE [7 4+ 5k*— (8 +«*) 'sin® y | +—5—;,- . 4[ll+6;< + 7k —(5+ 21+ k*) sin’ y |

2
+ 5% —?2 [7+45K*—(3+K?) sin’ y]
4
+ o ]\4 [11+6K*+ 7K' — (54 2K*+K*) sin’ y |

2
b2 §K§<2[11+3K2+3K2+7K2K2—(5+K2+K2+K2K,2)sirﬁy] .. (33).

In all the cases which we shall have to consider the first of these expressions is
small compared with the second, because « is nearly cqual to unity and «” small, and
because cos’y is also rather small.

Now let
e=—%(r—0o) + {(1+)) COSZ,B}

. . (33 bus).
n=—4%(2r+0)+ {(1+]\)

Then, since ¢ = ¢ cos y, b = ¢ cos B, the equations (31) and (32) become

a'—A' = k)\: (cos® y+\ cos® ,8+e)]
aqQ,—-A'= ‘:)\ o (BN + cos® y+) !

Eliminating kc¢*/3M?, we have

(@, — A, (cos? y+ X cos? Bte) = (A'—A) BN+ cos’y+n) . . (3D).
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FIGURE AND STABILITY OF A LIQUID SATELLITE. 201

This is the equation to be satisfied by the axes of the ellipsoid. If we treat e and 7
as zero, 1t is the same as that found by Rocme.* 4

* The form of this equation is so unlike RocHr’s, that it may be worth while to prove the identity of
the two. '
RocHE writes his equations in the form

st (1= ) -r u du _s(1=s) r w du =t(1—t)r udu
BG+Ni-rs)o(l+su)(A+t) B s+3+M)o(L+su)(A+u)Fe £+ X Jo(T+u)(T+u) B’

where B2 = (1 +u) (1 +su) (1 +#u), and s is the square of the ratio of the least to the greatest axis, and ¢
the square of the ratio of the least to the mean axis.
In my notation

sin? y
sin?

, and éhange the independent variable from « to ¢, we find

If we write us+1 =

, . 2c088 B [vsin?y (sin2y—sin?y) ,, ]
Rocur’s first integral = Sty cos'y L A3 iy
_ 2cos B ([vsin?y (sin? y —sin? y)
» second o, = sin® y cos y jo cos? YA W ¢ (A)
. _ 2cos® B (vsin?y (sin?y —sin?¢)
s third = ¥ €os y Jo cos? Y A3 # ]
where A% = 1 — «2 gin? ¢, :
The coefficients are R
st(t=s) _ cost y sin? 8
(B+A)t—As  cos? B[(3+A)—Acos? 5]
s(l-s5) _ sin? y cos? y L ‘ (B)
S+3+A 34+A+cos?y o T ’
St(1=8  _ k2 sin? y cos? y
P+ A cos? 8 (cos? y + A cos? 8) |

Then ROCHE’S equations are equivalent to
1st of (A) x 1st of (B) = 2nd of (A) x 2nd of (B) = 3rd of (A) x 3rd of (B).

But the two equations are not independent, and I will only pursue the consideration of the form
involving the 2nd and 3rd of (A) and (B).

Now . . ) ) \
sin? ¢ (sin? y —sin? ) _ sin? ¢ _ cos? y tan? ¢ ’
cos? Y A A , A
sin? ¢ (sin? y —sin? ) _ cos? Bsin?y _ cos? y tan®
cos? i A3 K2 A3 2 A

and I have proved in (25) of the « Pear-shaped figure, &c.” that

-

A = Py = al j:&%‘bd%

sin? y ‘
1. Pl 1 _ keos?y vtan2¢d
A P, Ql ——sin2 y jo - ¢,
1 _ gy - keos? B |y sin?y
Al =Pl Sy L AS di.

VOL., COVI,—A, 2D
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202 SIR G. H. DARWIN ON THE

It is possible to express this equation in terms of elliptic integrals and to use
LreceNDRE'S tables for finding the solution, but the method is very tedious, and after
finding a few solutions in that way I abandoned it. It may, however, be worth
while to mention that

1_ 1 . I’ | cos® B—2«"
A—A, o 'y[ = 511 y cos y cos B+ ot 57 E|,
2 . cos 2 cos” B—
A'-Al = o 7[ 5 sin.y cos y cos B— 'BF K252 E],

where

Y dl[l I 2 o1n2
F= j\/(1 S E_[0¢(1~K sin? ) dip.

When the forms of the ellipsoids have been determined, the radius vector becomes
determinable from either of the equations (34).

The conditions that the internal potential of an elhps01d satisfies POISSON $ equation
and that ¢ is homogeneous in @, b, ¢ of degree —1, give the two following equations :—

Al & &k
e Tae =Y

Al+ @+ @ — k= 0.

Our two equations for 1/* may be written

’All—gll (Ob + 0N+ E) = 0,

3)\3

k
Al —@+ EVE [

(3+X) c2+0&2+0277]‘ = 0.
These four equations afford a determinant by which A;', @', @, may be eliminated.
On reduction we find
1 8/abe
1 A I3,
3Ar? 6 (LEA+En+3c%e/b)
1a?+1/b*+1[c

8P =+ A (b4 %) +¢* (p+e) —

2 cos B

Therefore RocHE’S second integral is equal to —————
x sin® y cos y

(4, - AY), and his third integral is equal to
2 cos? B 1_ AL '
sty cosy O AT
Using these transformations of the second and third of (A), and dropping redundant factors, we get
(cos?y + A cos? B) (A1~ A1) = (B+ M+ cos? y) (At — Arl).

This agrees with the result in the text when ¢ and 7 are negleeted,
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On putting a =ccosy, b=ccosB, and noting that ¢ = . if and that
Y

_l_ﬂ c? COS y COS B = &3, I ﬁnd that

A
. §[2Fcot—ycosﬂ— 6 ]
a® ? 1+ sec® y + sec? B (36),%
7 8—cos’y+\(1+cos’B) 6 N o ’
14+A - 1+sec®y+sec’ 8
where ( ' )
_ 1 3 (n+esec
S"m[n+€—1+sec"7+secz,8]'

However, this is not practically the most convenient form from which to compute
the distance between the two ellipsoids.

* Tt is by no means obvious how this formula is consistent with results which we know by other means
to be true. 1In the case when A = oo we have a liquid planet rotating with the same angular velocity
as an infinitely small satellite revolving in a circular orbit in its equator.

Let us first consider the value of {. In the present case the semi-axes 4, B, ' pertain to the infinitely
small satellite, and are therefore negligible compared with terms in @, b, ¢. Since the axis denoted by ¢ is
that coincident with the satellite’s radius vector, and since the equatorial plane of the planet must have a
circular section, we have ¢ = b. ‘

But since b = ¢ cos B, it follows that 8 = 0 or x sin y = 0. Now y does not vanish for ¢ = ¢ cos y, and
a is the polar semi-radius of the planet; therefore x = 0.

If we consider the formula (24) for {, expressing, however, the several terms in the form of (15), we see
that for A = o

3 1
2 g2 2 _ 22 2 _ a2 ...
(= 2(c a)+564,3(c a)+48746.5(c a®? ...,y
whence
2 P
{=3L312 94s1n47+—§—-s1n67 I (1))

1072 56 489

The factor of correction to KEPLER’S law of periodic times for a small satellite revolving about an
oblate planet, whose equatorial radius is ¢ and whose eccentricity of figure is sin y,is 1+ ¢, where ( is
expressed by the above series ().

Now considering the formula (33 bis), we see that for A = o and 8 =0

= A= ¢

In (36) we therefore have

1 3 (n+ e sec? B) [ 3 2¢ tan? y
8 = S AV kL ) - = -
"1+ /\[’7 teo g + sec? 3 + sec? 7] 2 3 + tan? y] 3+ tan? y

When « = 0, the elliptic integral F is equal to y; thus (36) becomes

. 6

3l 9y oty — — 9

2[ v ooby 3+tan2y]

B 6 2¢ tan’y
34 tan?y 34 tan?y

2D 2

5
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§ 11. Solution of the Equations.

In all the ellipsoids of which we shall have to find the axes, it happens that «*tan®y
is fairly small compared with unity. Hence it is possible to expand A in powers of
that quantity.

We have
A* = 1—k*sin’y = cos® y (1 +«” tan® y),
and
1 1 1,72 2 1.3 /4 4
3= pv [1—1«” tan y+goge tan Y—eels
Y :
]' —_— 1 3,72 2 . 3.5 /4 4 ”
o 00837[1—-5:( tan® y+ 33" tan' y—... |

From this we easily obtain

o o a® s 2 4) —
R 3(1+§)73 = cot? y [y (3 + tan®y) — 3 tan y].
This is the well-known formula for the angular velocity of MACLAURIN'S ellipsoid.
It should be remarked that (35) is identically satisfied by A = o, x = 0, for when we use the above
values of ¢ and 7, the equation becomes divisible by 1+ ¢.
© Since ¢ is a symmetrical function of «, b, ¢ and 4, B, C, it follows that { is the same in form for A and
for 1/A.  Therefore when we consider the case of A = 0, the formula () gives the required result, but
¢ and y refer to the large body which is throughout most of this paper indicated by capital letters.
Thus for A = 0, .
5 O . 2. 2 2
{=1% 7z S T+5% <7§ sin® P> + is (

b
o

sin? I‘>

I

5 a2 sin?l' 4 at <sin2 I >2+ 5 ad <sin2 I )3
1§

1022008 ' ' Syt \cos™ T 76 \cos™ T"

In the case of A = 0, % vanishes; K_also vanishes and so also does the angle B. Hence we have
e={cos?B, n=1_
With these values, equation (35) becomes

(@1 = Art) [cos? y + (M + () cos® 8] = (' = A) [3+ (A+() + cos? y].

Hence ¢ plays the part of an augmentation to A.
With A = 0 the equation assumes the form .

(A —A) (cos? y + ¢ cos? B) = (Al — AL (3+{+ cos?y) . P ()

Tt follows therefore that an infinitesimal satellite revolving about an oblate planet, whose rotation is the
same as the revolution of the satellite, is very nearly identical in form with a small but finite satellite
whose mass is a fraction of a spherical planet expressed by ¢. This curious conclusion follows from the fact
that if we take equation (35) and put ¢ and 7 zero (which corresponds to a spherical planet and small
satellite), we get exactly the equation (b) just found, only with A in place of {.
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Now from (25) of the “ Pear-shaped figure,”

Y Y Y 12 .
K E sin® 'yd Al = Koos 'yf tan® yd’y gt = K08 ,BJ smsydy.
sin’ylo A sin® y A siny Jo A

When the A’s under the integral signs are expanded, all the terms of the series
involve integrals of one of two types. If we write

A A

SOCIETY

OF

SOCIETY

0= '1 loge1+smy,
sin y cos y
the types are :
Y S].rl 'y 1 : m=2,, _ 2%‘_1 on—4
J'o cos™ ™! Cl'y—qm'y[2 2tan 14 (2n—2) (2n—4)tan Y
(=) . (2n—1) (2n—38).. 5y y+(— )n+1(217,—1)...3 (Q_l)J
(2n—2) (2n—4)...2 (2n—-2)...2 ’
Y sin®y 5 . 1 1 22 on—1 T
L coiy Ty =Sy [z R Y 7y M7 sy oy
n (27@—1) (27l_3)...5 2. n+l (27& ]. ]
—(- tan? y — (=)t 2n=1)-.3 g 4
(=) 2n (2n—2)...2 wty=(=) 2n (2n—2).. 2( )
As it is not quite obvious what interpretation is to be put on these formulee for the
smaller values of n, I may mention that when n = 0, 1, 2 respectively, the first
integral is sin y; siny (Q— 1) ; sin y[% tan® y—3 (Q— 1)] and the second is sin y O ;
siny [+ tan® y—4 (@—1)]; siny[4 tan* 'y—~— tan® y+ ;2 (@—1)].  For larger values
of n the interpretation is obvious.
If we use these integrals and write
§12—7 (@' =AY = «” [(fo—-crlx'2+arzic"*—-a'glc""...:|1
: % (37),
o gl_’ri_'x (gl—All) = 7'0"'7'1K,2+T2K’4—1'3K’6... J
{ we find
oy = +[2 tan® y+3—(3+sin® y) Q]
o, = 35 [§ tan* y—$§ tan® y— 5+ (5 +sin’ y) Q]
o = Tobg [$E tanb y— & tan* y+ 2 tan’ y+7 —(7 +sin’y) Q] -
oy = 2% [32 tan®y—128 tan®y + 28 tan' y—4 tan® y—9+ (9 +sin’y) Q]
7o = %[ —3+(3—sin’y) Q]
= 5 [3tan’ y+5—(5—sin’y) Q]
. Ty = 15 |1 tan' y—4§ tan® y—7 + (7 —sin’ y) Q]
5 = ws [l tan® y—+% tan' y+ 2 tan® y+ 9—(9—sin’y) Q]
7y = D3ET 8% tan® y — 5% tan’ y+ ¢ tan' y—§ tan® y— 11+ (11 —sin’ y)Q] .  (38).
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206 SIR G. H. DARWIN ON THE

It would not be difficult to find the general expressions for these functions, but 1t
does not seem worth while to do so.
The equation (35) for determining the form of the ellipsoid involves the factor
cos® y+A cos® B+e; if we write )
M= - )\smzfzy ,
(L4+X\) cos® y+e

this factor may be written in the form [(1+\)cos®y+e]|[1+Mk?]. Hence the
equation (35) may be written '
[7o—Tik +7or" =756 [(L+N) cos® y+€] [ 1+ Mi'?]

= k?[oy— oK+ ok — oo, . [ 3+ N+ cos® y+1].
. d YT
If now we put :

we have
7,— 1K 1t
oy— oK+ oKt

— /2 /4 /6
= v, [ 1+ vk — v + v — ...

Hence our equation may be written

vy [(14+X\) cos® y+e€]
3+N+cos’y+7y

(v > = v + v, ) (1 + Mi?) = ™

Whence on writing
I, = 3+A+cos’y+n
(L+X) cos® y+e
P 1+ (Mv,—v,) ' —(Mv,—v5) ...
L/'Uo—‘M_vl

The determination of L for given value of y involves that of 5 and ¢, and these can
only be found from an approximate preliminary solution of the whole problem. But
when L is known approximately, the solution of (89) is very simple, for we first
neglect the terms in «* and «* on the right-hand side, and so determine a first
approximation to «. As a fact I have not included the term in «° in my computa-
tions, because it would not make so much as 1’ difference in the value of cos™ «'.

For Rocur’s problem when e and % are neglected the solution is very short, but
when these terms are included the computation is laborious.

We now turn to the determination of the radius vector.

(39).

We have
2
A= 2, ()
2 3 3
Since ¢* = '3%2,8 and k C(;Sir'l);(;)sﬁ = 1)\—?)\ , we have
kc? 1 ksiny  a’

VA 3(1+\) cosBeosy #*
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Therefore
K _ 19 — KSin Y - —3_1.3 3 )\ 2
sin'y(TO ) 8 (1+X\)cos Beosry o~3( Fhoosty+)
‘Whence ,
g,_g — 3(1+)\) COS.BCOS Y To"'TlK,g"l“TgKM""TgK’B... ) ) . . (40)
7 sin®y 3+ N+cos’y+y ' )

Thus a table of values of 7, 7y, 7,, 73 enables us to compute r for a given value of v,
when «” has been found.

In the following tables the v’s and 7’s were computed for the even degrees of y and
interpolated for the odd degrees. These functions are found as the differences
between large numbers, and therefore great care would be required to determine them

TABLE of Auxiliary Functions.

V. Log v, vy, Log vy. Log va. | Log vs. 70 Log 7. | Log 7. | Log 7.
30 9:94493 | 0-14279 | 9-15470 | 7-9576 | 7:15 | 0:010592 | 6:85440 | 5-9805 | 5222
31 9:94085 | 0-15461 918925 | 8:0264 | 7-25 | 0-012124 | 6-94587 | 6-1063 | 5°378
32 9-93661 | 0-16722 | 9:22329 | 8-0941 | 7°:36 | 0:013824 | 7-03507 | 6:2288 | 5533
33 993222 | 0-18065 | 9:25684 | 8-1607 | 747 | 0-015702 | 7-12194 | 6:3478 | 5685
34 999764 | 0:19493 | 9-28988 | 8:2263 | T7:58 || 0:017774 | 7-20666 | 6-4639 | 5834
35 9:92285 | 0-21006 | 9-32234 | 8-°2906 | 7:67 | 0020052 | 7-28937 | 6-5780 | 5:979
36 9-91786 | 022613 | 9-35436 | 8:3541 | 7-76 || 0-022554 | 7-37022 | 6:6899 | 6-122
37 9-91269 | 024327 | 9-38608 | 8:4173 | 7-87 | 0-025294 | 7-44939 | 6:7994 | 6°262
38 9:90731 | 0:26150 | 9-:41747 | 8-4800 | 7-97 || 0:028290 | 7-52697 | 6:9069 | 6400
39 9-90167 | 0-28091 | 9-44857 | 8:-5418 | 8:'06 || 0:031559 | 7-60306 | 7:0127 | 6-536
40 9-89578 | 0:30160 | 9-°47943 | 8-6031 | 814 || 0-035121 | 7-67777 | 7-1167 | 6:669
41 9-88965 | 0:32368 | 9-51011 | 8-6646 | 8°23 || 0:038994 | 7-75120 | 7-2192 | 6-802
42 9-88327 | 0-34724 | 9'54063 | 8-7259 | 8:32 | 0:043203 | 7:82342 | 7:-3202 | 6-932
43 9-87665 | 0:37244 | 9-57105 | 8-7869 | 8-42 || 0-047768 | 7-89452 | 7-4200 | 7:061
44 9-86974 | 0:39937 | 9-60138 | 8:8476 | 851 || 0:052713 | 7-96459 | 7-5186 | 7:189
45 9-86257 | 0-42823 | 9-63168 | 8:9081 | 8:60 || 0-058064 | 8:03371 | 7:6162 | 7316
46 9-85509 | 0:45917 | 9-:66197 | 8-9685 | 8:69 || 0-063847 | 8-10195 | 7-7128 | 7-442
47 9-84729 | 0:49239 | 9-69231 | 9:0290 | 8:79 || 0070093 | 8-16939 | 7-8087 | 7-567
48 9-83915 | 0:52812 | 9-72274 | 9-0896 | 8:87 || 0-076830 | 8:23608 | 7:-9036 | 7-691
49 983069 | 0:566566 | 9:75325 | 9-1505 | 8:96 | 0:084093 | 8430210 | 7-9981 | 7-814
50 9:82187 | 0-60804 | 9:78393 | 9-2117 | 9:05 | 0:091916 | 8-36752 | 8:0920 | 7-938 |
51 9:81263 | 0:65278 | 9:81477 | 9-:2733 |- 9-15 || 0:100336 | 8-43241 | 8-1855 | 8:061
52 9-80300 | 0-70121 9-84585 | 9:3353 | 9-°24 | 0:109394 | 8:49682 | 8:2786 | 8-183
53 9-79298 | 0-75372 | 9-87721 | 9:3976 | 9-33 || 0119134 | 8:56082 | 8:3716 | 8:306
54 9:78252 | 0-81075 | 9:90889 | 9:4606 | 9-°43 | 0:-129601 | 8:62447 | 8:4643 | 8-429
55 | 9-77159 | 0-87288 | 9:94095 | 9:5245 | 9:52 | 0:140845 | 868785 | 8:5570 | 8-552
56 9:76016 | 0-94064 | 9-97342 | 9:5893 | 9-°62 || 0-152919 | 8:75103 | 8:6500 | 8:676
57 9-74819 | 1:-01471 ‘00634 | 9-6550 | 9:72 | 0°165883 | 8-81407 | 8:7431 | 8-801
58 9-73565 | 1:09590 -03977 | 9-7216 | 9-82 { 0-°179801 | 8-87703 | 8:8367 | 8:926
59 972252 | 1-18517 07378 | 9-7893 | 9:92 |l 0:194740 | 8:93999 | 8:9306 | 9:052
60 9:70874 | 1-28362 -10844 | 9-8582 ‘02 | 0210779 | 9-00303 | 9:0252 | 9:179
61 9:69426 | 1:39268 +14385 | 9-9287 <13 | 0°227997 | 9:06626 | 9:-1206 | 9-308
62 9:67910 | 151349 +17998 -0006 *24 | 0:246485 | 9-12966 | 9-2168 | 9-439
63 9-66319 | 1-6480 *21696 0743 +36 | 0°266343 | 9-19331 | 9:3140 | 9:572
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208 SIR G. H. DARWIN ON THE

with a very high degree of accuracy. The differences of the tabulated numbers do
not run with perfect smoothness, showing that there are residual errors of one or two
units in the last place of decimals. The accuracy is however amply sufficient
for the end in view, and it would have been wasteful to spend more time over
the computations.

§ 12. Determination of the Form of the Second Ellipsoid.

The parameters ' and K determine the form of the second ellipsoid in the same
way that y and « determine the first. It is obvious that a/r is determinable in two
ways, and therefore any given value of y must correspond to a certain definite value
of T. The fitting together of the two solutions can only be effected with accuracy
by interpolation, but it would be so enormously laborious to find by mere conjecture
the region in which to begin calculating with assumed values of T, that an approxi-
mate solution of the problem becomes a practical necessity.

After various trials I find that on neglecting e and % and writing

sin? Y
7(3+\+cos’y)

X =

the solution for " may be written approximately in the form

(1 +\) cos’y

A 11 2
= S ooty [1—(9— 7)x (111+228\—49\%)

— 1 (7875+281850+42383N2—8773\) y*...] . . (41).

If € were added to the numerator of the factor outside the bracket, and » to the
denominator, this formula would give nearly as good results as the more accurate
method of the last section.

Also T find
a® _Z(1+\)cosBcosysin’y 9 ‘ .
a i 142 1 2\ . 2
ped 37 A oo’y [ +Q(5+>\)X+$(8055+1718)\+v175>\)X
+——L (35333894 8222607\ + 1021479M+60025N%) y*+...] . . (42).

In order to obtain the desired approximation, it is necessary to express a’/r® by a
series which can be inverted ; but this is not possible in the form just given, because
cos B depends on « and therefore involves x. I find then by means of the above
series for «# that

cos Beosy = 1—3(7+\) x+E(69—106A=7)\%) 5? +—~—(253+753)\ 1901N—49M%) ...,
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On introducing this in the above formula for a®/»* I find

3
3= 5 (140) x [1=(2-)) Xx—(109-+67A+0)) ¥°
— o (1577124261395N+97656) +1568)\%) x2... ]
On writing
_ 5 1 a?
FEE TR

and inverting the series we find
X = a+(2—)\) ot2+(1 17 + 59N+ 2)\2) b

L (306872+269975N+5739N2+908\) at... . . (43).

22311

This series expresses a function of v in series proceeding by powers of a’/r*, and a
similar series must also connect a function of I' with the radius vector, so as to
determine the figure of the second ellipsoid appropriately. This second series may
be written down by symmetry. L

a

Since A must now be replaced by 1/A, the function corresponding to e is 1% 0,8

Asin?T
7[(8+cos®T) N+1]°

or e, and the function corresponding to y is

If then we write
_ sin? T
C7[(8+cos® T)N+1]’

the symmetrical series for the other ellipsoid is
X = a+(2N—1) &+ (117N + 59N+ 2)\%) o
+ gy (306872)\*+269975\2+5739N%+908)a...

Now o is easily computed for the first ellipsoid, and then X is computed by the

series. Thus we have
(A+1) X

sin? T =
AX +7

We obtain in this way a fairly accurate value of I' corresponding to the value of v
which determines the first ellipsoid. We can then compute K’ by the method of the
last section. We may thus obtain a good idea of the values of T' and K with which
it is necessary to work in order to obtain the final solution.

§ 13. The Equilibrium of Two Ellipsoids joined by a Weightless Pipe.

In § 3 the problem is considered of the equilibrium of two masses of liquid, each
constrainedly spherical, when joined by a pipe without weight. It was shown that
VOL. CCVL.—A. 2 E
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210 SIR G. H. DARWIN ON THE

the condition determining the ratio of the masses for given radius vector is expressed
by a certain equation which was written f(afr) = 0. Further, it was proved that if
JS(afr) is positive the two spheres of liquid are too far apart to admit of junction, and
if it is negative they are too near. Finally we found that all these solutions were
unstable. |

The solutions for the two spheres showed them to be always very close together, and
as all the solutions for two ellipsoids, when they are in limiting stability, made them
much further apart than were the two spheres, it seemed somewhat improbable that
two ellipsoids could be similarly joined by a pipe, and certain that they would be
unstable if such junction were possible. Nevertheless, it seemed conceivable that the
additional terms, which must appear in f(afr) when the constraint to spherical form
is removed, might alter the conditions so that the junction of ellipsoids by a pipe
should become possible. It thus became expedient to solve a problem analogous to
that of § 3 when the two masses of liquid are ellipsoidal.

The conditions of equilibrium of two ellipsoids unjoined by a pipe are given in § 10,
and the additional condition corresponding to junction by a pipe is

ﬂ+%w2%§=

Y 0.

In the present investigation I shall neglect the higher ellipticities, denoted f; and
F¢, and terms of higher order than those in 1/7".
With this degree of approximation we have

A X i
V = (dmpad)’ [(1 S T oy v+ ().

where (e£), is given in (14) (with omission of terms in 1/77),
Also

o= 2 J’ ” dv
Tk (BP=1)E (A1)
and ¥ has a symmetrical form in K and K.
3
We have besides o® = §mp —?:é (1+¢), where { is given in (24); and [ is given in (22).
The differentiation with respect to N and the subsequent re-arrangement of the

equation are rather tedious, and I will not give the details of the operations. It may
however be well to note that £, K are functions of \, and that

A1y 1
AN 3NN dh T 3(L+N)
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I find finally that the equation of condition is f <§:—> = 0, where

f<§> _ 9 1HNPHNP a2 Ba(W—V)
r) T EAANBAHNE) e 2 (1THN)B(1-NF)
1

~ TR (o) [20 5 {48 —20M— (19—15)\) cos® y— (9—25)\) cos® B}

A A

20 3{20 —48\— (15—19\) cos® I'— (25— 9\) cos® B}

Sact

+ £ 1288 — 1120~ (260~ 140)) cos’y— (204~ 196)) cos’ 8

+ (87—63\) cos* y+ (59—91\) cos* B
+ (80—70X) cos® B cos® y}
3aC*

+ ————56()9"5{112——288)\—(140—260)\) cos’ T'—(196—204\) cos® B

SOCIETY

+ (63 —87\) cos* I'+ (91 —59\) cos* B
+ (70—30\) cos® B cos® T'}

OF

4 oact” 330 O {40 (1 A) — (18 —22\) cos® y— (22—18\) cos® T’

— (14—26)\) cos® B— (26 —14)\) cos® B
+15 (1—X) (cos® y cos® T'+ cos’ B cos® B)
+(7—8\)cos’y cos’ B+(8—7\)cos’ T cos2,8}:| (44).

In this expression ¢ and C are respectively the longest semi-axes of the two
ellipsoids, which are pointed at one another.
We may derive ¢ and ¥ from LEcENDRE’S tables of elliptic integrals for

Fle,y), ¥= F(K,T);

lI"_-csm'y 20,1 r

A B

or we may expand the integrals in powers of «””tan’y and obtain the approximate
formula

¢=%[1+(Q—1)(1+ K24 ok K0 ) — 1k tan® y (14 25k +E055K...)
+55K tant y (14562, )—gsk® tan® y (1 +...)] . (45),

SOCIETY

1 . l+siny
sin y cos y
It should be noted that when the two ellipsoids reduce to spheres, we have

where Q = =

The formula for ¥ is of course symmetrical

OF

V3,
—B=T=B=0,0=->2 1 _g

v A
2 E2

2 (1+))"
&

2
)\1/3 > v = g (]. +)\)1/3.
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Thus
. A\ _ o L4NA4NE g 5 is.
f(¢'> HEV A ED DY ot 7

This is the form obtained in the solution of the restricted problem of § 3.

We conclude that if f(a/r), as expressed in (44), with values derived from any
solution of the problem of the equilibrium of two ellipsoids unconnected by a pipe,
is positive, the two figures are too far apart to admit of junction, and wvice versd. 1
have in fact always found it positive, although always diminishing as » diminishes, so
that junction would seem to be always impossible, at least so long as the approxima-
tion retains any validity. This might indicate that there is no figure of equilibrium
shaped like an hour-glass with a thin neck. However, I return to this subject in
discussing numerical solutions, and in the summary of results.

In the case where the two masses are equal, A\=1, and the above formula for f(a/r)
fails by becoming indeterminate. As this is a case of especial interest, it must be
considered.

Since the two shapes are now exactly alike, we may take «, v, B, k to define either
of them.

When \ = 1, the first term of £ (a/r) becomes — 12?:7—1/3 % .
The second term becomes
Bay (\—1)  _ Bya (L+N4+NP) _ 9ya

T2 (1A T 2 (T NP (1AF) T 42
All the terms in 1/7* are one of the two forms
—\C? A —C?
F[ml—)\%] or ¢ I:TZW] .

. a2 A3 . a2 1
F= 0" = ‘ :
(cos B cos y)* (14N’ (cos B cos T)*2 (1 +\)%2

Now,

In the limit 8 =B,y =T,and A =1; and we find that the first of these forms
becomes £ F¢? and the second —3G'¢.
Again, of the terms in 1/*, those in ¢* and C" are of one of the two forms

c'—=\C* [ Aet—C*]
r [——————1 _)\2/3:] or & [_—-—1—}\2/3_| .
In the limit the first of these reduces to —1F¢*, and the second to —ZG¢*. -

The last term in 1/ has a common factor 1—\, when y =T, 8 = B, and

11—\ BEDLLNBLL 3

(TN (1=NF) ~ (T NP (1HNP) 2.2
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By means of these transformations we find for A = 1

f<_3:> = 1?3__1/3[_%? +a+ 300 3( 74+47 cos® y+67 cos’ B)
) .
* 722)cqn5' (—272-+300 cos® y+356 cos® B—123 cos' y—151 cos* B
—110 cos? B cos’ 'y)] (46).

If we put B=y =0, and note that c becomes this expression reduces as

2/3)

before to the correct form.

§ 14. Ellipsovdal Harmonic Deformations of the Third Order.

The two ellipsoids whose forms have been determined are subject to further
deformation by harmonic inequalities.” The expression for the ellipticity f
corresponding to all the cosine-harmonic functions for ¢ greater than 2 and s even
is given in (25), viz. :—

e @ (r]H) B (v) B (1) € (4) -
i = 'EIT(Z’L—I‘I) {gs—-Al k®  cos 'yl:1+3(3+K2)E2-+ ]} . (47)
3\? sin’ B 14k 7
I shall begin by considering the ellipticities f; and f;* corresponding to ¢ = 3 and
s =0, 2.
I define

P (v) = v(v—q®), (s=0,2) L. Coe (48),

where ¢* = 2[1+*F /(1 —%x*+«")], with upper sign for s = 0 and lower for s = 2.
Then
s dv
Qs (v) =5 (")[ Ps (V,)]2 =1 (= 1/K2)1/2 .

Since » is always greater than unity, the function under the integral sign may be
expanded in powers of 1/v, as in (7), (8), (9) of § 5, and the 1ntegrat10n may then be
effected. In this way I find

7(1+:<2)+10q 7[9(3K + 2+’ +3)+28q (K +1)+40q] }
Qi) =7 ‘*{H 2.91% T 8.9.11xw (49).

In all the cases we have to consider «* is nearly unity and «? is small. Then,
since ¢* = }[4—2«"F /(1 —«”+4«")], and since the function under the square root
may be expanded in powers of x>, we may obtain approximate expressions for ¢* in
the two cases s = 0, s = 2.

When s = 0, we have
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214 SIR G. H. DARWIN ON THE

When s = 2,
Q@ = 1—5?+ 5"+ 5" ..

If we substitute these values for ¢* in (49), and express the functions of «* therein
in terms of «”, we obtain the following results :—

k k* 10 V2, 5 o, s K 2 4 L2
Qo) = | 10 (L H0n g% ) 5 + 53 (T a0 ) 5

k Kk k*
_%”(;) 7 24{1+ (1+3c+ 356+ 8 01"..) 2+§§;(1+:<"”’+45:c"‘+31 ’6..);:4...}.

Shorter forms may be given to these by making the expansions run in powers of
1/kr®; we then have

k * L
TSI |
Q7 ]f> b3 (1 4 0k ™. ) 49 (1 0k 3 220 ) }
\r) Tt 33 33 kr? 2? 28 ) )
(50).

It will however suffice for our purposes to take

AN Lgkz}
A7) = pa{ 1+

-l
@(3) = a1+ i
The next task is to determine the product s (v) s (1) Cs' (37) (s =0, 2).
1
ksiny sinf’
If we write A = 1—¢*sin’y, with the definition of 3, given above in (48), we
have

(51).

The form of the ellipsoid is determined by »,, where v, =

Ps (w) =

It will be remembered that ¢ has a different value according as s = 0 or 2.
I now make the following definitions,

P (p) = p(€1*=9"), C'(¢) = (¢"—K"cos’ ) o/(1—K" cos’ §) ;
P (1)Cs (3r) = * (=% . . . . . . . . (53).

It is easy to show that rigorously
7* (K —¢%) = FH[1—’—k*+(1 3% /(1 =k +4K)] (s =0, 2).
Whence approximately, with the upper sign for s = 0,

.- (52).

ksin® 'y

go that

¢ (%) = 4% (L =45k +0k%.) o . . . . . (54).
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FIGURE AND STABILITY OF A LIQUID SATELLITE. 215
With the lower sign for s = 2,
Q? (=) = =1 (1+0c”—F..) . . . . . . (55).

The three last expressions (53), (54), (55), give the two values of P, (1) Cs ().
We now turn to the functions T;. The general definition of § 5 was

@ = B2 [ () € )P p do,

where M was the mass of the ellipsoid. Hence in the cases under consideration

&= 4wk37czlsnﬁllzosy |90 G @) pde (s =0,2)

These integrals are evaluated in (38) of my paper on ‘ Integrals’; whence I find
3
Ti = 2 D[(1-3) (1= §") +(1 =¥+ 3¢ D],

where D = + ,/(1—«”+4«"*), with upper sign for s == 0 and lower for s = 2.
It will, however, suffice if we use the development of D in powers of % The
result is, in fact, given in the equations next below (38) in ‘ Integrals,” and they are

T = () (1-26"+430"...),
@32=% /4(1 K/2+_3__1_K/4 ) ' (56).

From (53), (54), (55), and (56) we now find

1!0 X)) 1—k24%K"...
3&3( 3\2 — %5_ 16 — 245_(14_,(12_% 4“.),

T 1—26%+ 32 ...

PL1) CLG3m) _ 15 L+0K =
T’ LR PRI

(57).

= — LB (14+67— 3.,
Thus from (51), (52), (57), we find
— o Q5 BB Culhr) = — 220 (g ) K (10 B,
~ 3 @ (BB Chm) = s (14— 5 (143 55).

By (47) f¥ is equal to the above expressions divided by

kK cos’y 3(3+k%) K ]
s__ 1_ —_—
A=A 3\° sin? B [1 e A

It therefore remains to determine @,* and A%
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216 SIR G. H. DARWIN ON THE

In order to find A,' we expand A in powers of «? tan®y. Thus

1 _ 2 (tan’y — 2 j sin’ y 7 .
A' = kcot 'yjo X dy = k cot®y " 7/(1 "2 tan’ y+ 8 tan*y...) dy;
whence
A= 2sm {[148c7+ 556 [1 —cos® yQ] -1k tan® y (1 +§«%) + 41/ tan' y 1.

The result may, of course, be obtained with higher accuracy if it be desired to do so.
By (25) of the ‘ Pear-shaped Figure’

%s = 15’ () @5’ (n) =

K.Al ¥ sin’®
sin® 'yjo A4Zd%
where A® = 1—¢*sin®y, with appropriate values of ¢ for s = 0 and 2 respectively.

It is clear that under the integral sign 1/A may be expanded in powers of «* tan®y,
but this is not possible with 1/A%

The two cases s = 0, 2 have to be treated by different methods, and I begin with
@,, where s = 0.

Since

—}f cos-y[1+]K,2tan y+3 tant y.. ],

1t 18 nécessa,ry to consider the integrals with respect to y of the functions

siny  sin®y sin'® y
cosy A L ocosty At cos® y At

ertmg x =siny, and ¢* = 1 , this is seen to be equivalent to finding

2 dx S 2 da
!’(1 —2°) (@ —a®)*’ j‘(l —2) (o —a?)?’ f(l—-mz)?’ (FP=a?)”

(I—wz)iz‘;z—mz)vz = -1 3 (a3—1)2<1—1-9c+ 1 -T—ac>—4 (aosi—l)<(a—l-w)2+(aim)2>

a (3&2—-5)< 1 1 >
* 4 (a®~1)* a—w atw)’

a® 77— 1 1 1 1 1
(=P (@) 1 (a2~1)3<1—m+1+96>+4 (0&2—-1)2<(1—x)2+(1 +90)2>

- 222?_1)7?») <a1m+aim>+4 (agﬁ—l)2<(aix)2+(aim)2> ’

" _ 1+3(21a—18a+5> 1 > 170 9< 1,1 >
(@ —a?)? 1)4 I~z 1ta 16(aP—1)\(1—a)® " (1+a)?

(
T3 (a —1 2< (1—l%oc >+SZZO(L?2——1§)4)<001—w+ o&—ll-ac>
(@

4(0&—1)3 (@—ax)’ (a+x>

(L—a?)
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FIGURE AND STABILITY OF A LIQUID SATELLITE. 217

Fach term in these expressions is integrable, and the limits of integration are
x =siny to 0. After integration ¢ must be put equal to 1/g, and since the result
will only be true as faras «* we must put for ¢”its approximate value § (1 —%«>—5«™).
When these processes are carried out, and the formule combined, we find

q*sin®y

{ 1+ (1+1 2y K/4)Q (1+OK'2 = /4,)A
1

— gk sec’y (1+3%k%) + sk 8604')/} N 1))
In the coefficient and in A,* (or 1—¢”sin’y) it is as easy to use the rigorous value
of ¢” as the approximate one, so it may be well to repeat that

1 lo el+sm'yl
sin y Ccos y

¢ =3[1+—/(1-%*+«")], and Q =

If a process parallel to that adopted for finding @, were adopted in the case of &7,
it would lead to a divergent series, but fortunately a much simpler process is
available.

In the case of ¢ = 3, s = 2, we have ¢ = 1—3«”+3«™ ..., so that

AP = cos® y [1+5k (1—5«”) tan® y].

Accordingly we are now able to expand 1/A,* in powers of & tan®vy.
We have then

1
Z—l-z— p y[l—l( (1—3«”) tan® y+ 4« tan'y ... ],
%: coi'y[l—ﬂ(/z tan® y+31 tanty ... .
Whence
sin’y _ sin®y 8,2 "4
sy 1— 13 R
| AEE = oof 'y[ (1—%) tan® y+33« tan' y ... ]
Now
(7 sin’ yd .
— t -2t Q-1
Jocosy @ = sin y [} tan* y an® y+5:2 ( )1
(7 sin® yd : 1 6 7 5 7.5
= 14 St 4 —158 (01
Jocosy ¥ = sin y [% tan an' y+ =5 tan® y—1:3:8 ( )1
[Y
.Oil(; ;/oly-— siny [§ tan® y— 2 tan’ y+ &L tan® y — 215 tan® y 4 2253 (Q—1)],
where
0= .1 loge1+smy.
sin y COS y

VOL. CCVI.—A. 2 F
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218 SIR G. H. DARWIN ON THE

Combining these formulee, I find

A = it [{tant y—§ tan® 3 (0= 1)} {1450+

K? (1+5'9c") tan’ y+ 13 tan®y] . . (60).

4 sin®

The form is somewhat awkward, but I have not been able to reduce it to any
better shape.

§15. The Values of @ for Higher Hormonic Terms.

For higher harmonic terms it is necessary to adopt the approximate forms of the
functions investigated in * Harmonics.” The development is there carried out in
powers of a parameter 8, which I will now write B, to avoid confusion; this

2
parameter is equal to i +K2, or to $i*+4«™... of the present paper.
K

The functions are here defined by

’ d
Q@) =9i0) e
SV [P @) *—1)" <V2__ ?_F—L'%D 7

but in the notation of §10 of “ Harmonics” this would be called @ (v)/E:. Thus,
if [@; (v)] denotes that function as defined in “ Harmonies,” we have

Q/ (V) = %;éﬂﬁ .

We have for the approximate expression for {3,
P (v) Py (V) +'8°qs"2 - (V) + :8098+2 Ak (V) + By qs- L (V) + By’ Qs+4P s (V)

The investigation on p. 500 of “Harmonics” shows that the leading term of

(@ ()] is

2t2! 1+s! 1+s—2! 1+s+2!
_y 14 Bufom E5= 20 4 By D2
(=) g 2411 [ +Boe-s i+s! +Buflss T+s!

14+s—41

s e +:802qs+4

) 4
+ﬁon4 ﬁ_‘SLl:I.

1+s!

This has to be divided by %¢, the formula for which is given in § 10 of « Harmonics,”
and we thus obtain the leading term of @/ (»).
For the second term it will suffice if we take B, as zero, so that it is only necessary

to consider @7 (v), which is equal to (+*—1)" di;; Q; (v).
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FIGURE AND STABILITY OF A LIQUID SATELLITE. 219

Since

2 (1 1)? 1+2! 1
() = 511 T2 1 91 (20+ 32 T ]

by dlﬁ'erentlatlon and by expansion of (»* --l)s’2 in powers of 1/»* we obtain

oy o2 lis I ((42) ((+1)+s ]
W) = )2i+1zw‘+1[1+ 5@i13)7 L

A A

Accordingly, .in order to find the second term to the degree of approximation
adopted, it is merely necessary to multiply the leading term by

t+2) (i+1)+s2.
2(2¢+3) v

14

In orde1 to find the leading term explicitly we have to insert for the ¢s thelr
values, and after some tedious reductions I find

SOCIETY

2t pmg ! i1
®s<k> %.f—iﬁfs—,)z+1 {1+IBO (2+27/)+3_4 0 [_2T+22 (82+3)

+22(6i—1+232)+2i(37;+1)—32]}x{1+(i+22)(§i*+'é))+32 f—j} . (61),

OF

where

_t(r+1 1—1) 2 (2+1) (¢4+2
2__8_2:T), T = ( ) ) ( )

This formula fails for the cases of s =0 and s = 2, and these cases have to be
treated apart. Following a parallel procedure I find

/ i S0 Litl
@*’2@ = Zalizz] km {1+1B, (3 +20) +5156:2[2932+ (1440 + 298) S — 481 —40]}

2u+1! g
[elegneet) o

A A

@i(_ﬂg):%(z’)“‘k“ — 1By (i~ 1)+ 1k 027;(7;—1)(7i2_37:—6)}{1+§3ﬁ3ﬂ kz}(63)-

20411 2 2(20+38)

The values for ¢ less than 3 are not required, and when 7 = 3 these formule are
found to agree mutatis mutandis with those of the last section.

It is pretty clear from general considerations that the higher inequalities
corresponding to harmonics other than the zonal ones must be very small. 1T
have, in fact, computed the third tesseral harmonic inequality (: = 3, s = 2), and
find that it is so very minute compared with the third zonal inequality (i = 3, s = 0)
as to be negligible.  Accordingly it appeared to be a waste of time to develop
formulee for any other than zonal inequalities for values of ¢ greater than 8. Thus
of the formule just determined the only one of which actual use is made is (63).

2 F 2

SOCIETY

OF
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220 SIR G. H. DARWIN ON THE

§ 16. The Fourth Zonal Harmonic Inequality.

In developing the expressions for the higher harmonic inequalities it seems to
2
be most convenient to retain the parameter B, which is equal to %{%, instead of
K
developing in powers of ™ as heretofore.
On putting ¢ = 4 in (63), we find

Ve Yo 2
@4(}‘)_ 529 <1—|—11 >(1 —88,4+4418.2).
With the notation of “ Harmonics ” we have

Pu(v) = Pi(r)+1BlL (v) + 1358 Pi (v),
€. (p) = 1—5pB, cos 2¢+555,° cos 4.

194(1) P,(1) =1,
J(37) = 1458+ 386

Accordingly

Again, from § 22 of “ Harmonics” for type EEC, 7 = 4, s = 0, we have

jm@ﬂ@d(f=%ﬂk3Vo(V02*1)”2<Vo iw‘)) [1+108,+3356,%)

But @, is this integral multiplied by 9 and divided by 8 times the volume of the
ellipsoid.

Therefore
T, = 1+108,+22548;7

In this formula the coefficients of the powers of B, increase with great rapidity,
and the approximation may not be very satisfactory; nevertheless it is the best
attainable without an enormous increase of labour.

Combining our several results

) 8 & IR
n S\T, @4<%> 1‘@4(1) @4(%7) == TO5N 70 <1 + }i 2) (1 8/80+2’&§:802) (64).

It remains to find 3P.(w), and the denominator in the expression for f4 which
involves &,— A%

‘We have
= 394(”0) Q34(”0)
dv

= [5134 (Vo)] j [134 (v)]2 (V 1)1/2 (v’?—- 1 /K2)1/2 ’

and change the independent variable

Inside the integral sign I write » = L
, K Sln
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to ¥3 I also put siny = ksiny. At the surface of the ellipsoid we have ¢ =1y,
1
ksiny sinf

x = B, and since », = , these are the values to be used in J3,(v,) outside

the integral sign.
Then we have

o d v ’
L) (Vz__ 1)1/2 (:2_1/,(2)1/2 =K jo sec x d‘P.

P (v) =% (¥ —1)'+5 ('—1)+1 = 145 cot® x+ 5 cot’ ,
P2 (v) = 4 (P—1)[7 (—1)+6] = 1 (6 cot? x+7 cot' x),
Pt(v) =105 (P—1) = 105 cot* x.

Since further |
Pu(v) = Pi(v) +1B: L4 (v) + 13587 Li (v),
P.(v) = L+a cot’ x+b cot' y, ]
a=5(1+3B), S ()|
b =35 (1+3B,+35) J

It must be noted further that when » = , at the surface of the ellipsoid, y = 8.
It follows then that 33, (v,) = 1+ cot® B+b cot* 8; and from (64)

Since

we find

where

a
(1—8B,+2838:2) (1+a cot? B+b cot' B).

3>\9@£ < )334(”")394(1)@4(2 ™) = —1—08ng <1+iikz>

It remains to consider the evaluation of @,, which now assumes the form

a, = [ (1+0& cot’ B+ cot’ B

= d
1 +a cot? x +b cot? X) SeeX ¢

It would no doubt be possible to split the subject of integration into partial
fractions, and thus obtain an accurate value as was done in the case of @, but it does
not seem worth while to undertake so heavy a task, because a sufficiently exact value
may be obtained by quadratures.

The method is employed in § 18, p. 294, in my paper on “ Stability,” and may be
explained very shortly.

I divide v into 10 or 12 equal parts—say 10 for brevity—and let 8 = t%y.

I then compute eleven equidistant values of the subject of integration, say wu, u,

.. Uy, corresponding to ¢ = 0, 28, 35, ... 108. As a fact it is unnecessary to compute
the first four of these, because they are practically zero.

The equidistant values increase so rapidly that they are very inappropriate for the
application of the rules of numerical quadratures. Accordingly I take an empirical
and ‘integrable function, say v, such that v, = u, and v, = uy, and apply the rules
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2292 ' SIR G. H. DARWIN ON THE

of quadrature only to the differences u,z~?)n. The result is a correction to the integral
r v dis.
0
The empirical function which satisfies these conditions is

‘l’aylog o
v = Upe “,

Ujo

When ¢ =y = 108, v = u,; and when ¢ = 98, v = ume_mg”** = Ug.

Y Uy

Then j' vd P00 (] g 10Tog, (/)
0 ¥ = log, (w10fus) ( )

In the cases we have to treat e "%/ jg an extremely small fraction, so that

ulo'y . . . .
practically [ vdy = T0Tog, (unf)’ and this is the function to be corrected by the

result of quadrature.
For the‘quadra,tures we have

2
Vi = U Vg = U = sy &
10 = U, g = Ug, Vg = Up|—]> ’U'z—um C.
Uso ulO

Thus the equidistant values of the function to be integrated (arranged backwards)

are
U 2
0, O, u——um< 9), u—-um( > &e.
Uso Uso

1 \

The first two are zero, the next three or four are sensible, and the rest are
insensible ; thus the quadrature is very short. The correction is found to be very
small, and we might perhaps have been content with the empirical integral without
material loss of accuracy.

§ 17. The Fifth Zonal Harmonic Inequality.

This is treated exactly in the same way as the fourth, and I will only give the
results.

We have
@u(f) = rorr H(1+ 1 51—+ 30080,
Ps (v) = Ps 0) +iB L5 (v) +135B°L5" (v),
C:(v) = /(1—Bs cos 2¢).[1—7, cos 2+ F&B,” cos 4¢],
Ts = 1+158,+1528;7°
‘Whence
; k e 2
~ e @} )81 Culhm) = — e (141 5) (1138472787 v/ (148,
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FIGURE AND STABILITY OF A LIQUID SATELLITE. 223
Then
P; (v) = cosee B(1+a cot® B+b cot® B),
where
a =7 (1+12B,),
. b= ——(1+5BO+128 0)
Finally

& cosecB(1+acot2,8+bcot*,B)]é d
& = K[o[COS&CX(l-I—OL cot? x +b cot* ) sec x &

which is to be evaluated by quadratures as was proposed for the fourth harmonie.

§ 18. Moment of Momentum and Limating Stability.

The moment of momentum of the system is Jw, but when we are determining the
configuration of minimum moment of momentum, which is a figure of bifurcation and
gives us the counfiguration of limiting stability, the conditions are different according
as whether we are treating the problem of the figures of equilibrium where both
masses are liquid, or RocHE’s problem in which the ellipsoid denoted by capital letters
is rigid.

Accordingly I write

I = dmpa’ [% () + i

4 3 1 24 (02
(1+)\)2:|+ 3'7Tpa 5 1+)\(B C)

and for determining the angular momentum of the figures of equilibrium I take the
whole expression for I, but for RocuE’s problem omit the last term.

3
Since ® = %wp%g(l +{), I compute for RocHE’S problem

A (B°+) A2
1/2 .
= 3/2(1+£) [ 1+N  a? +(1+x)2a2:|’

and for the figures of equilibrium

o 1 B
— 1 1/2 .
M2 = ot qﬂs/z( + c) 5 (1 n )\) a2

The moment of momentum is given by

To = ($mp)™a® (s or po).

It will be observed that u; and u, are expressible by numbers for any given solution
of the problem.

Suppose now that we have a succession of solutions for equidistant values of y
differing but little from one another. Then if the solutions lie close to the region of
limiting stability, we shall find that one of them corresponds to minimum moment of
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224 , SIR G. H. DARWIN ON THE

momentum, either of w, or of u, as the case may be. Such a solution is a figure of
bifurcation, and of the two coalescent solutions one has one more degree of instability
than the other. If one of the two is continuous with a stable solution, and if,
moreover, in the passage to the undoubtedly stable solution it passes through no
other point of bifurcation, one of our two solutions is secularly stable and the other
unstable.

Now, two liquid masses revolving about one another orbitally at an infinite distance
are undoubtedly stable, and such a case is also continuous with one of our solutions.
Further, ScEwWARZSCHILD has proved that RocHE’s ellipsoid has no point of bifurcation
from first to last, and as this is true of one such ellipsoid, 1t is true of two.* Hence
we conclude that the minima of y, and p, will afford figures of limiting stability.

§ 19. Approximate Solution of the Problem.

It is clear that spherical harmonic analysis is applicable to the case when the two
liquid masses are widely distant. When they are so much deformed by their
interaction that that method becomes inapplicable, good results may be obtained from
the formulee of the last sections by means of development in powers of sin y, and it is
this plan which is especially considered in the present section.

It appears from § 1 that when one of the masses is small compared with the other
(A small), the configuration of limiting stability for the problem of figures of
equilibrium occurs when the two masses are very far apart. As M increases, that
configuration corresponds with diminishing radius vector. It seemed then probable
that at least some of the solutions might be found by means of these series, and if
this were so it might, in many cases, prove unnecessary to follow the same laborious
procedure as in finding the limiting stability of RocuE’s ellipsoid. This view was
found to be correct, and T therefore think it well to record the methods by which the
developments may be obtained, without however giving the full details of the very
laborious analysis. '

When the masses are far apart, the terms denoted e and % in the equation for «”
and in that for a’/r® are small, and they must be neglected in the developments.

Writing for brevity ¢ = sin y, we may prove that

2n

L1 l+siny _ g g

O = - e >
sin y cos y 0 2n+1

tan’y = —1+%¢”, tan*y=1+3(n—-1)g",
0 0

fanty = —143ZDO=2) o e g 2 (D) (0=2) (028) o g,
0 1.2 ) 1.2.3 :

Hence the developments may be obtained of the functions oy, oy, o5 ... 7, 71, 72 .-,

* SCHWARZSCHILD, ““ Die Poincarésche Theorie des Gleichgewichts.” ¢Neue Annalen der k. Sternwarte
Miinchen,” Band III, 1896.
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and thence of v, v, v,... in series proceeding by powers of ¢*; and thence we may
find «* in that form. '
The result as far as g* is

K,2=1+A[ 30 92_12(11+26)\) s ]
44N 7(1+\) 72 (14)N)?

I have also found the term in ¢°, but shall make no use of it.
With this value of « or of «?, which is 1—«”, we develop the expression for a’fr?®
in the same manner. The result is :—

14N [ 54+A P 88+53\ , ]
7 (4+)\) 72(4+>\)2g

FEE VY

By inversion we have

2 ginga < D(4FN) " 25 (54+N)(4+N)a’ 125 (69+2N)(2+)N) (4+M)a’

¢ =sn’y = ?(TT)\_) B oiy (T+N)E 7 25,77 (L+\)? o
. k? cos B cos y ) WP i? < N \23 a2
, _ 3 it follows that - = 5
Since e IB i a°, 1t 1ollows a on? /8 1+ )\> (COS B cos ,y)2/3

The semi-axes of the ellipsoid are given by

a’  a’sin’B  \14+M/ (cosBcosy)”’ a® a’ K2 a?  a? '

=}

But cos’y = 1—¢? cos’ B = 1—«’¢? and therefore

c? Y 2\—1/3 13 o’ 2\2/3 2 2\~1/3
C= () == = () (=g (=)

a a
l). apy Y3 (1 _ ,2,2\%3
L= (1) A= e

Setting apart the factor [A/(1+)\)]?*, which is common to all, these three are all
expressible in the form, say
F =1+ (ay+ak®) 9°+ (by+ b1+ barc®) g*+ (o4 e16® + eor® +056%) 9°+ .0,

where the a,, a;, by, b, &c., have different numerical values according to whichever of
the three functions we are treating.
Now the above formula for «? enables us to write

K2 = A0+B0g2+ 0094 cer
where the forms of 4,, B,, C, are obvious.
Hence we have
F = 1 + (ao’l’ale) 92 + (b0+a1B0+b1Ao+ b2 02) 94

+ (ot erdot A+ e AP+ b, By+20,4,B,4+ 0, Cy) ¢° ...
VOL. CCVI.—aA. 2 ¢
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In this way I find the following expressions f'or the semi-axes in series proceeding
by powers of g* or sin® y :—

A A

SOCIETY

OF

A A

SOCIETY

OF

¢ [\ )23[ TN o, 524+228N+14N )
a? <1+>\ 3(4+N) 327 (4+\)°
, 120926+86748) + 19428\ +686X° ]
377 (4 N) G
a’ _ < A )3/3 [1_ 542N o 6448N+T7M
a?  \l+\ Y CES KA T ey (66)
11122424600~ 1851\°+ 196\ , ] S
| LT (4+\)°
v ( A >2/3[ 2=\, 1874+110A—14N° ,
: 7T 3(@+n Y T T 3T @y
_ 28492+ 36723\ +14160\°—686)\° ]
LT (AN) 1

It is easy to verify that the product of the three series is unity, as should be
the case.

The next step is to substitute for ¢ ¢* ¢°... their values in terms of a®/r* and its
powers. In this way I find

§=< A )2/3 [1+ 5(7+N)a® | 25 (419+187X+11)) a )
a®  \1+\ 6 (1+\) 7 2287 (1+0)? °
125 (99848 +74769N+16503\°+ 488)\°%) a° J
253077 (LAY h
a? =< A )2/3 [1 5(5+2) 8", 25 (11+37A=X)
a® \l+\ 6(1+1) +° 22857 (L+\)7? 8 L (67)
125 (23992+ 17895\ + 1587\ +178)\%) a° } '
B (1N P
B _ [\ >2/3 [1_ 5(2=\) a® _ 25 (157+1190A—11)) a°
a’ (1 +A 6 (L+\)2° 287 (LN o°
| 125 (19114+23673A+11577\2—488\%) a’ J
253572 (L+\)° ] )

By writing 1/A for A we obtain the formule for the axes of the other ellipsoid.

The numerical coefficients increase rather rapidly so that the series are useless
unless a/r is small, and accordingly this method fails to give any result for RocHE'S
ellipsoid in limiting stability ; it is, however, useful for the problem of figures of
equilibrium, as already stated.

If we had relied on spherical harmonic analysis, we should only have obtained the
terms in a®/r%,
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In order to obtain the expression for the angular momentum, which has to be a
minimum for limiting stability, we must evaluate {. Now, from (24) and (15), we
have

{= W?;z(%z—a?—bz+ same in 4, B, ()

56 —— [8 (a*+D*)+8¢*— 8¢ (a®+ b°) + 2a°b*+ same in 4, B, (],

¥ o [2(A%60+ B+ CC)+(47+ B+ C°) (@ +1+ )= 50° (+1)
, — 5 (A2+Bz)+50202].

By means of the above series for «’, % ¢*, and of their analogues for 4%, B? C?,
I find

where
BT HEMNHTAH]
(T+N)"

5 N7 (82+38\+)\7)+82N+38N+1
! (T+N)%2

\Y3 (33+ 10)\+)\2)+33)\2+ 10A+1 5 )\2/3(154-102)\-}- 157\2)
T+ R oy

Il
)

m

3
Il
(SN
(SIS
wlor

Now we have to evaluate the moment of momentum given above in § 18, viz.,

w= () 007 [ R G4 g B0 ]

When 8%, ¢, B? C? have their values attributed to them, we find

(1+)\)2 (a\ (L+) [R+S +1’ - U— . +7'2] :
where
R= %(1+x5/3) (1+N)",

L [)3’3 (5+2))+ %(5)&2)] ,

TEIANT

— ____5______ 2/3 5 _1_ R ]
I'= sy [" (131+340+110)+ = (131N 4340+ 11) |
U= W‘%ﬁw [W (40367 +25548\+ 2463\ -+ 488)%)

+ % (40367N+25548X+ 2465\ + 488)] .

In § 1, where the same problem is treated for two spheres, we had I, m, n, S, T, U,
all zero.
2 G 2
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In order to find the minimum moment of momentum for a given value of A, I
compute I, m, n, R, S, T, U, and assuming several equidistant values of r compute

\ A
values of p,x -(1';1)‘) . When the coefficients are computed we very easily find the

value of # corresponding to the minimum.

When that value of » is found, we are in a position to compute the axes of the
two ellipsoids.

For values of \ less than & the results found in this way would be satisfactory,
and for A = { they are, I think, adequate. IEven for the case of A = 1 the result is
not very remote from the truth, for whereas the correct result for the minimum of
angular momentum is rfa = 2'638, the result derived from this approximate method
is rfa = 2'51. But it would have been impossible to foresee that the result would be
as good as it is.

Parr IIL—NUMERICAL SOLUTIONS.
§ 20. Rocur's Infinitesimal Ellipsoidal Satellite in Limiting Stability.

We require to find the form of an infinitesimal satellite (so that X = 0) revelving
in a circular orbit about a spherical planet. When this problem is solved we shall
be able to see how far the solution will be affected when we allow the spherical
planet to become oblate under the influence of a rotation of the same speed as that of
the revolution of the infinitesimal satellite. This last is what I have called the
modified form of RocHE'S problem.

The planet being spherical and X being zero, the small terms ¢, €, 5 vanish, so that
our solution becomes rigorous. »

The angular momentum of the planet’s axial rotation is to be omitted, and the
satellite being infinitesimal the momentum of its axial rotation is zero. Thus the
moment of momentum of the system varies as the square root of the satellite’s radius
vector, and minimum momentum coincides with minimum radius vector.

The solution of the problem has been obtained in two ways: first by LEGENDRE'S
tables of elliptic integrals, and secondly by means of the auxiliary tables given above.
In the first method, I knew with fair approximation by various preliminary compu-
tations the values of « and y which lay near to the required solution. Now there is
a certain function of «, y, say f(sin™ k, ), which vanishes when the ellipsoid is a
figure of equilibrium ; accordingly I computed by means of LEGENDRE'S tables the
following eight values of f(sin™ &, ) for integral degrees of sin™! x and y :—

F(77°, 57°) = +0:0000878, f(77°, 58°) = —0-0000624
S(78°% 59°) = +0°0000724, f(78° 60°) = —00000785
F(79° 61°) = +00000562, £ (79°, 62°) = —0-0000939
F(80°, 63°) = +0:0000408, f£(80° 64°) = —0:0001046

(probably the last significant figure in each of these is inaccurate).
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Interpolating from these we find four values satisfying f (sin™ vy, k) = 0, namely :—

F(77°, 57°:5846) = 0, F(78° 59°4798) = 0, £(79°, 61°:3744) = 0, £(80°, 63°:2806) = 0.
With these solutions I find

sin~! r/a
77° 2467860
78° 2458191
79° 2:455446
80°  2'460289

By formulee of interpolation the minimum of 7 occurs when sin™ « = 78°:8756. Then
by a second interpolation this value of « corresponds with y = 61°°1383, and the
minimum value of » is 2'45539. We may take then y = 61° 8”3, x = sin 78° 52”5,
whence 8 = 59° 14'5. Since cos y = 0°4827, cos 8 = 0°5114, the three axes of the
ellipsoid are proportional to 10000, 5114, 4827 ; RocnE gave the ratios 1000, 496,
469, and the radius vector as 244, in place of 2:45539.

Turning now to the second solution, I solved the problem by means of the auxiliary
tables in two ways, namely, for y = 60°, 61°, 62° and also for y = 57°, 59°, 61°, 63°.

They led to virtually identical results, viz., that the minimum of » is 2:45521,
corresponding to y = 61° 8*4, sin™' k = 78° 52/0.

Finally the solution for RocHE's limit and for the ratio of the axes of the ellipsoid
in limiting stability may be taken to be as follows :—

v sinlx cos y cos B r/a

61° 8% 78° 52/ 0°4827 05114 24553,
2

with uncertainty of unity in the last place of decimals in  and of half a minute of
arc in sin™' k. '

We must next consider the modified form of RocHE'S problem, in which the large
body or planet yields to centrifugal force and becomes an oblate ellipsoid of revolution.

The approximate formulee of § 19 show that when A = o or when X = 0,

Hence in this case

The solution of the modified problem can only differ slightly from that just found
when the planet is spherical, and therefore we may compute { with sufficient accuracy
by means of the values of afr already found. I accordingly computed ¢ for
y = 60° 61°, 62° and found that in each case { was very nearly equal to 0-0088.

Now it is proved in the footnote to § 10 that, when \ = 0 and when the planet
yields to centrifugal force, e =7 = {; as the value of { is found with good approxi-
mation, it is easy to compute 7 for these three values of y. I thus find that in the
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modified problem, minimum radius vector, and therefore limiting stability, occurs
when r = 2:457, y = 61° 12/, k = sin 78° 50/, B8 = 59°17’; the axes of the large body
are determined by the approximate formuls of § 10 to be -aq = g = 10304, g = 09418,
Tt appears then that the yielding of the planet to centrifugal force makes very little
difference, as was to be expected.
These results are included in the table given below of results for solutions of the
modified problem of RocHE with finite values of \.

§ 21. Rocur’s Ellipsoidal Satellite, of finite mass, in limuting stability, the planet
being also ellipsoidal.

This is the problem which I describe as the “modified” problem of RocrE. It
seemed unnecessary to carry out the computations for the smaller values of M\, since
they are sufficiently represented by the case of the infinitesimal satellite where X is
zero. I therefore begin with the case of A = 04 and pass on to A = 05, 06, 07,
08, 0°9, 1-0.

It seems well to describe the process followed in one case as a type of all. It was,
in general, possible either by extrapolation from neighbouring values of \, or by mere
guessing, to begin with some values of {, ¢,  and their co-relative functions E, H for
the larger body, which were somewhere near the truth. With these we could compute
7, k, T', K with fair approximation ; thence values of , €, 9, E, H could be calculated
with close accuracy and the computation could be repeated. It was, of course, a
matter of conjecture as to what initial values of y would be found to embrace the
region of minimum angular momentum.

I will now describe the process for A = 04. Passing over the preliminary stages
in which fairly good values were found, we begin with the following conjectural
values :—

V. 46°. 48°. 50°, TI. 32°, 34°, 36°.
sin"! k  68°24°8 69° 320 70° 41”3 sin"' K 50° 120 51° 188 52° 34"9
T 33°189 34°18"8 85° 185 v 48°50™9 47° 244 51° 841
sin”* K 50° 520 51°380"1 52° 75 sin™' k  67° 150 69° 118 71° 370
log » 040245 0°39594 0°39060 log » 041071 039775  0°38726,
whence 1 compute |
{ 0056259 0°064863 0074219 { 0047883 0°062231 0082010
e 0045435 0°048102 0°050256 E 0140179 0°174168 0°218540
n 032004 0'36426 0°40838 H 040539 052564 0'69272.

By means of these and the auxiliary tables I find

sin”!x  68°24°6 69° 318 70° 40”5 sin”' K 50° 118 51° 188 52° 838
log » 0°40240 039591 0°39046 log » 041068 039768 0°38693.
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The computed values are so very close to the conjectural ones, in so far as they
have been as yet computed, that we might be content, but in order to illustrate the
process when the conjectures are less satisfactory, I proceed to the next stage.

By far the greater part of the discrepancy between assumed and computed values
(which in some cases was considerable) arises from error in the assumed values of 7.
Now assuming « and K to be correct, it is very easy to correct the results for a
changed value of 7.

In this case I find

corrected £ 0056274 0°064873 0°074271 corrected { 0:047890 0°062253 0°082137

’ e 004545 0°04811 0°05030 » B 014020 0°17423 0-21889
’ n 032012 036431 040867 ,» H 040546 0°52583 069385
Recomputing

sin”'x unchanged sin”' K unchanged

corrected log » 040240 0°39591 0°39047 corrected log » 0-41069 0'39768 0-38695.

By means of these we find two formulz of interpolation, namely :—

a

o3

_AQ% _ o )
= 2:4884—00342 <Z—;‘—8—)+0-0032 <Z__2f1§_> ,

'—384°
2

O\ 2
>+0'0075 <P‘2‘°’4> .

»{<

= 2'4985—0'0685<

These two expressions may be equated to one another, and therefore we have the
means of finding simultaneous values of y and T, and thence by another formula of
interpolation of x and K. Hence I obtain

¥ 46°. 48°. 50°. T. 32°. 34°. 36°.
I 33°134 34° 179 35°17"4 y 48°474 47°25"4 51° 344
sin' K 50° 522 51°295 52° 63 sin' k  67°12'1 69° 123 71° 856.

Comparison with the initial values shows that the conjectures were very good.

It now remains to compute the moment of momentum, and as we are dealing with
RocHE's problem the rotational momentum of the larger ellipsoid is not required. It
follows that the values of T' and K are not used, and since they are only required
for finding the shape of the larger ellipsoid, there was no necessity for a high degree
of accuracy in them. The moment of momentum is represented by the quantity pu,

of §18. I find then
y. 46°. 48°. 50°.

M 0:348640 0°348300 0°348519.

By formulee of interpolation the minimum value occurs when y = 48129 and

k = sin 69° 8391, The corresponding values are ::: = 2'4848, T = 34° 25”6,
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K =sin 51° 833"5. The last step is to compute the axes of the two ellipsoids from
the values of «, y, K, T

Of course the numbers set out above make no claim to absolute accuracy, but the
results tabulated below are, I believe, substantially correct.

The unit of length employed is the radius of a sphere whose mass is equal to the
mass of the whole system. If it were preferred to express the results in terms of
the mean radius of the larger body, all linear results would have to be multiplied
by (1-+X\)",

We may now collect the results in a tabular form, as follows :—

Sorutions for Rocue’s Ellipsoid in Limiting Stability.
The unit of length is the radius of a sphere whose mass is equal to the sum of the

masses, u.e., abc+ABC = 1, and —— abe =\

ABC

A 7. sin=! k. a. b. e. T. sin"! K. A. B. |. C 7 l

0 61°12 78° 50" | 0482+ w| 0511+ ®| 1'0 +» — — 0942 | 1030 | 1030 | 2457
04| 48°13 69°39 | 0562 0603 0843 34° 25/ 51°84/ | 0815 | 0886 | 0988 | 2 -485%
05 46° 40’ 68° 12" | 0597 0°642 0870 35° 59/ 54°30° | 0792 | 0°860 | 0979 | 2484 |
06| 45° & 66° 43" | 0627 0674 0888 37° 14/ 56° 41’ | 0772 | 0°886 | 0-969 | 2490
07 43° 38’ 65°20" | 0°652 0701 0901 33° 9 58°18" | 0753 | 0°815 | 0°958 | 2-497
08| 42°2¢ 64° 4 | 0678 0725 0912 38° 57/ 59°39" | 0-737 | 0796 | 0947 | 2502
09 41° 25’ 62° 58 | 0691 0 744, 0921 39° 40’ 60°47" | 0722 | 0778 | 0-937 | 2508
10| 40°15 61° 43" | 0°708 0762 0927 40° 15’ 61°48" | 0708 | 0-762 | 0°927 | 2514

The cases X = 0'4, 07, 1°0 are illustrated by figs. 2, 3, 4. The meaning of the
dotted lines near the vertices of the smaller ellipsoid will be explained in the next
section.

The distance »—(c+C) is the interval between the vertices of the two ellipsoids ;
the following are the values, using, however, more places of decimals than are
tabulated above :—

A, r—(c+0). A r—(c+C)

0 1-030 07 0638
04 0653 08 0643
05 0635 09 0650
06 0633 10 0660

It is remarkable how very nearly constant the intervening space remains throﬁghout
a large range in the values of \.

* The values r = 2-485 for A = 04 and » = 2:484 for A = 0'5 represent 2:4848 and 2-4844
respectively ; it is probable that the last significant figure in the former is a little too large and in the
latter too small, and that it might have been more correct to invert the 2-485 and 2-484 in the table.
I give the result, however, of the computation. ‘
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x B= 888

w
®

—/

Rotation

0 =-988

i of

Axis-

x A= 88a

Fig. 2. RocHE’s ellipsoid in limiting stability, when A = 0-4.
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Fig. 3. RocuE's ellipsoid in limiting stability, when A = 0-7,

x b=="762 . x B="762
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x h="762 x B=762

Fig. 4. RocHE's ellipsoids in limiting stability for equal masses.
VOL. OCVI.—A. 2 H
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§ 22. Harmonic Deformations of the Ellipsoids.

When \ is infinitely small, so that the liquid satellite is infinitely small, the
harmonic deformations are evanescent, and the same is true when X is infinitely great.
We saw in § 14 that there was reason to suppose that Rocur’s ellipsoid in limiting
equilibrium might be more markedly deformed for values of A midway between zero
and unity than for the latter value. I therefore determined the harmonic deforma-
tions in the three cases A = 0°4, 07, 1°0.

The formulee for the ellipticities f5, £, fi, f5 are given in §§ 14, 16, 17 and their
values may be found for the ellipsoids in limiting stability tabulated in the last
section. It appears that in every case the amount of deformation is small, and
therefore it was sufficient to compute the normal deformation at the two extremities
of the ¢ semi-axis, that is to say, at the points nearest to and most remote from the
other ellipsoid. At these points the normal displacement outwards may be denoted
de, with numbers affixed thereto so as to indicate to which harmonic it is due.

The results may be given in a tabular form, but it may be well to remark that f;?
(second tesseral of the third harmonics) was only computed in two instances, hecause
its effect was obviously quite negligible. For the same reason f?, fi, /5, f5' were
not computed at all. The following are the computed values of the ellipticities :—

Al 04, 0. 1:0.
fa 0161 0:234 0°163
f2 o —01127 —0°102 ?
fi 0°0042 0°0066 0°0059
/o 0:0009 0°0024 0°0033

We saw reason to suppose that the higher harmonics would be relatively more
important for the larger values of \, and there is evidence of the general correctness
of this view.

The values of the ellipticities afford us no idea of the amount of the normal
correction, and I therefore proceed to tabulate the values of 8¢, the prolongations of
the ¢ semi-axis.

Towards larger ellipsoid

A 0-4. 0-17. 1-0.

Seg 0°0193 0'0283 0°0194
Sey? 0'00039 0°00068 ?

S, 0°:00472 0°00886 0:00911

dcs 0°00110 0°00384 0:00629
Total 8¢ 0'0255 0°0417 0:0348
¢ 0'8433 0°9006 0°9270
c¢+6c¢ 0'8688 09423 0'9618
8—0‘3 1/38 1/22 1/27
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Away from larger ellipsoid

A, 04, 0-17. 1-0.
ocy —0°0193 —0°0283 —0'0194
dey’ —0°00039 —0'00068 ?
S, +0°00472  +0°00886 4000911
ocs —0'00110 —0°00384 —0°00629
Total d¢ —0°0161 —0'0240 —0°0166
c 0-8433 09006 09270
c+8¢ 0-8272 0-8766 09104
% 1/52 1/37 1/56

The last line in each division of this table has been given in order to show the
relative importance of the total correction. It is clear that the ellipsoid remains a
substantially correct solution.

These corrections to the semi-major axes are indicated by dotted lines at the
extremities of the longest axis of the smaller mass in figs. 2 and 3, and of both masses
in fig. 4.

We have in the last section tabulated r—(c+ ('), the distance between the two
vertices. Now, although I have not calculated the deformations of the larger
ellipsoid, it is pretty clear that they must bear to those of the smaller one approxi-
mately the ratio of A to unity. Accepting this conjecture, we have for the 8C of the
larger ellipsoid towards the smaller one the following values :—

A 04, 07, 1-0.
8C 0010 0°029 0-035
The distance between the two surfaces of liquid is clearly 7—(c+8c+C+8C).
Thus we have

A, 0-4. 0-7. 1-0.
r—(c+C) 0'653 0'638 0'660
Sc+8C 0036 0°071 0°070
r—(c+8c+C+8C) 0617 0567 0'590

§ 28, Certain Tests and Verifications.

In order to test how nearly the solution for a’/r* by series in (40) of §11 would
agree with the solution (36) of §10 in terms of the F elliptic integral, I computed for
N = 07 the value of 7fa in the two ways for three values of y, and found the
following results :—

A= 07.
y. 49°. 44°. 46°.
rfa by series 2:5355 2:4888 24500

7”/& by elliptic inte_grals 2+5359 24881 2°4495
2 H2
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The agreement seems to be as close as could be expected when five-figured logarithms
are used.

Certain terms in {, as expressed in (24) of § 10, were neglected on the ground that
they are of higher order than those retained. But it appears from the approximate
solution in § 19 that the coeflicients of the terms retained are themselves small, so
that we are really only retaining terms of the same order as others which are
neglected.

The most important of the neglected terms in { is

. 1 d 7
- %ﬁ* s () B: (1) Cs (Bm) »* dr & <_/5> ’

and this is a term of the seventh order. It seems, therefore, well to compute this in
one case, and see how large a proportion it bears to the whole value.

Since
BN _ & (1,10 #
Qs <7'> T et (H Y W)’

S PN N e
P () =~ (i)

Using this value and the other approximate values given in §14, where f; is
determined, I find that the neglected term is

_4 A r2_15 1 k7< 25 k2>
'7)\sin6,8(1+0'( 16k )7"7 1+% Kkr?
K cos2y< 3 (3+k%) K )
1
- _—— 1 — e
A=A, 3\r® gin? B + 14K #°

The numerical value of this, for the case of RocHE's ellipsoid in limiting stability
when A = 07, is found to be +0'0016. Now, the value of {, as computed from the
terms retained, was found to be 0:0677. Thus the neglected term is about one 42nd
of the whole. The neglect then seems fairly justified.

I thought it worth while to discover how far the modification of RocHE’S problem,
whereby the larger body is ellipsoidal, affects the result. I find that whereas it makes
but little difference in the solution for any single assumed value of v, it does make
a sensible difference in the incidence of the minimum of angular momentum, and
therefore of limiting stability. Thus, when A = 05,1 found in one of my preliminary
solutions for Rocrr’s modified problem that limiting stability occurs when 7fa = 2:49
(the more correct value is 2:484), but when the larger body is a sphere it occurs
when 7fa = 2'35. Thus we see that ellipticity in the larger body induces instability
at a greater distance than if it were spherical. This might have been conjectured
from general considerations,
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§ 24. Figures of Equilibrium of Two Masses in Limuting Stability.

In this case both masses are liquid. We saw in § 2 that when one of the masses
is infinitely small, stability only exists when the two are infinitely far apart. When
N is less than 05 we may obtain fair results from the approximate investigation of
§ 19, but for greater values of A it is necessary to employ the laborious method
adopted in determining RocuE’s ellipsoid.

When A = 0'5 T obtain the following approximate results for the two figures :—

r = 2'574
a=062  A=08l,
b = 066, B =087,
¢ = 081, C = 095,

Tt is probable that the value of # derived in this way is too small,

For A = 04, I found » = 2:59, but did not calculate the axes.

The only other case in which the problem has been solved is for equal masses, when
A=1. The two ellipsoids are exactly alike, and I find limiting stability occurs for
the following values :—

y = 86° 18", «k=sin 59° 38/, »=2638, a= 0728, b=0771, c=04897;

and
r—2¢ = 0°844.

This is illustrated in fig. 5.

x b="171 x B="171

o
i 2 I
L] k= <
o
¢ =897 C =897

x b="T7T1
Fig. 5. Two equal masses of liquid in limiting stability.

§ 25. Unstable Figures of Equilibrium of Two Masses.

When A = 0 the figure of minimum radius vector, when the larger body is rigid,
is also that of minimum angular momentum, but for larger values of A\ there is an
ellipsoid considerably nearer to the larger body than that which possesses limiting
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stability. I have only determined the ellipsoid of minimum radius vector in two
cases, viz., when A = 0'8 and 1°0.

When A =08 I find minimum radius vector to be r =236, whereas limiting
stability occurs for » =2'50. When A= 08, » =236, the ellipsoids are determined
by the following data :—

y = 54° 20/, «=sin71° 51, T =46°10", K =sin 64°20";
whence
a=0619, A =0705,

b=0675  B=0774,
¢c=1063,  C=1018.

When N\ = 1, the minimum radius vector occurs when vy is about 54° and is then
equal to 2:343, whereas limiting stability occurs when » =2'514. I have not
computed the axes, since it suffices to learn that there is an ellipsoidal solution when
the two masses are considerably nearer than is consistent with stability.

As vy increases, the ellipsoids get longer and longer, and it is interesting to inquire
whether they increase in length with such rapidity that, notwithstanding the increase
of », the interval between the two vertices continues to decrease, or whether the
increase of # annuls the simultaneous increase of c.

The following table of values, computed with fair but not extreme accuracy, affords
the answer to this question.

=1,

Ve 7. C r—2¢. Differences.

44° 2:429 0962 0'506

—76
46° 2896 0983 0430

—~74
48° 2:870 1007 0°'356

—70
50° 2'354 1'034 0°286

—69
52° 2:345 1064 0217

—68
54° 2:343 1097 0149

—67
56° 2350 1134 0082

—67

58° 2:367 1'176 0°015.

The differences of 7—2¢ hardly diminish at all, and it is clear that the next entry
would be negative, or in other words the two figures would overlap.

These results are obtained on the supposition that our approximation is adequate,
but the small terms , €, 5, which are really infinite series, show signs of bad con-
vergence as y.increases._ I think 1t Probable that when we get to these extreme
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cases the convergence breaks down. It appears, however, justifiable to argue from
these results that the unstable body continually elongates until its end coalesces with
the other elongated body. I have no doubt but that the same holds true when the
masses are unequal, and that we should always find »—(c+ () diminishing until the
two meet. The poorness of the approximation of course would prevent us from
making good drawings when coalescence is approaching.

§ 26. On the Possibility of Joining the Two Masses by @ Weightless Pipe.

This subject is considered in § 13, and it is there shown that if a certain function
written f (a/r), for a given solution of the figures of equilibrium of two detached
masses of liquid, is positive, the two masses are too far apart to admit of equilibrium
when joined by a pipe without weight—and conversely.

Now I have computed f (afr) in a number of cases of RocHE’s ellipsoids in limiting
stable equilibrium, and have found it always to be decisively positive.

The corresponding function for two spheres is given in (3) of § 3, and its first term
is +a’/r*.  'When we compute it for two ellipsoids, we find the corresponding term to
have become negative, and the additional terms, which are given in (44), § 13, are
also negative. Hence f(afr) is decidedly less for two ellipsoids than it is for two
spheres of the same masses with the same radius vector. Thus the deformation of the
two bodies tends in the direction of making it possible to join them by a pipe without
weight, but it seems certain that in the cases of the RocuE's ellipsoids in limiting
stability such junction remains impossible.

I also computed f(a/r) for the much elongated ellipsoids which are roughly
computed in the last section and finally overlap, and always found f(a/r) to be
positive, as far as the approximate formula went. The additional terms tend,
however, more and more to cause f (a/r) to vanish, and the approximation becomes
very imperfect. Now I believe, although I cannot prove it rigorously, that if we
could obtain a more exact evaluation of the forms of these elongated ellipsoids, and if
further a more exact value of f (a/r) were calculable, we should find f (a/r) vanishing
near the stage when the computations would show the two ellipsoids to overlap. It
therefore seems probable that there is a figure of equilibrium consisting of two
elongated masses joined by a narrow neck. These ellipsoids are very unstable when
detached, and, according to the principles of § 2, it seems inconceivable that junction
by a neck of fluid could render them stable, ‘

Parr IT1.—SUMMARY.

Since the foregoing investigation may be read by mathematicians, while astronomers
and physicists will perhaps wish to learn the nature of the conclusions arrived at, I
shall devote this part of the paper to a general discussion of the subject, without
reference to the mathematical processes used.


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

240 SIR G. H. DARWIN ON THE

Two problems are solved here simultaneously ; for the analysis required for their
solutions is almost identical, although the principles involved are very distinct.

We conceive that there are two detached masses of liquid in space which revolve
about one another in a circular orbit without relative motion—just as the moon
revolves about the earth; the determination of the shapes assumed by each mass,
when in equilibrium, is common to both our problems. It is in the conditions which
determine secular stability that the problem divides itself into two.

One cause of instability in the system resides in the effect on each body of the
reaction on it of the frictionally resisted tides raised by it in the other. If now the
larger of the two masses were rigid, while still possessing the same shape which it
would have had if formed of liquid, the only effect on the orbital stability of the
system would be due to the friction of the tides of the smaller mass generated by the
attraction of the larger one. Investigation shows that in this case, as the two masses
are brought nearer and nearer together, instability would not supervene from tidal
friction until the two masses were almost in contact; but it is clear that the
deformation of the figure of the liquid mass presents another possible cause of
instability. In fact, instability, as due to the deformation of figure, will set in when
the masses are still at a considerable distance apart. It amounts to exactly the same
whether we consider the larger mass to be rigid, or whether we treat it as liquid and
agree to disregard the instability which arises from the friction of the tides raised in
it by the smaller body. Accordingly we may describe the stability just considered as
“ partial,” whilst full secular stability of both bodies will depend on the tidal friction
of the larger mass also.

The determination of the figure and partial stability of a liquid satellite (z.e., apart
from the effects of the tidal friction of the planet) is the problem of Rocme. He,
however, virtually regarded the planet as constrainedly a sphere, whilst in general I
have treated it as an ellipsoid with the form of equilibrium.

It has already been remarked that, as the radius vector of the satellite diminishes,
partial instability first supervenes from the deformation of the smaller body. It
therefore hardly seems worth while to consider the partial stability of a system in
which the liquid satellite (hitherto described as the smaller body) is greater than the
planet. We may merely remark that in this case the problem comes to differ very
little from that involved in the determination of the full secular stability of two liquid
masses ; for if we consider the case of a large liquid mass (the satellite) attended by a
small body (the planet), it clearly makes very little difference in the result whether
or not the tidal friction of the small body is included amongst the causes of instability.

This being so, I have not thought it worth while to continue the solutions of
RocuEg’s problem (modified by allowing the planet to be deformed) to the cases in
which the satellite is larger than the planet. The ratio of the masses of satellite to
planet is denoted above by X\, and the field examined by means of numerical solutions
extends from A = 0 to A = 1, while the part omitted extends from A = 1 to A = oo,
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Tidal friction is a slowly acting cause of instability, and from the point of view of
cosmical evolution the partial stability of Rocur’s ellipsoids is of even greater interest
than the full secular stability of the system.

The limiting stability of Rocug’s liquid satellite is determined by the consideration
that the angular momentum of the system, exclusive of the rotational momentum of
the planet, shall be a minimum. This exclusion of a portion of the momentum of the
whole system corresponds with the fact that we are to disregard the tidal friction of
the planet as a cause of instability. If all possible cases of the liquid satellite be
arranged in order of the corresponding (partial) angular momentum of the system, it
is clear that for given momentum there will in general be two forms of satellite ; but
when the momentum is a minimum the two series coalesce. If then we proceed in
order of increasing momentum, the configuration of minimum is the starting point of
two series of figures; it is a figure of bifurcation, and one of the two series has one
fewer degrees of instability than the other.

One of the two series is continuous with the case of a liquid satellite revolving
orbitally at an infinite distance from its planet, and this is a stable configuration.
Moreover, M. ScHWARZSCHILD has shown® that the whole series of RocHE’s ellipsoids
does not pass through any other form of bifurcation. - Hence we conclude that of the
two series which start from the configuration of minimum momentum, one is stable
and the other unstable.

The unstable series of solutions is continuous with a quasi-ellipsoidal satellite,
infinitely elongated along the radius vector of the orbit, and the radius vector itself
is infinite. Since two portions of matter cannot occupy the same space, the infinite
elongation of the satellite would be physically impossible, unless the order of infinity
of the radius vector were greater than that of the longest axis of the satellite. Now
it-appears from the numerical results of § 25 that this is not the case, and that the
satellite becomes more rapidly elongated than the radius vector increases. Hence if
the solution of the problem were exact we should reach a stage at which the two
masses of liquid would overlap. I shall endeavour hereafter to consider the
interpretation which should be put on this result. ' ’

A series of solutions for RocHE'S ellipsoid in limiting stability is tabulated in § 21,
and the table gives the radius vector and the three semi-axes of each body. The
unit of length adopted is the radius of a sphere whose volume is equal to the sum of
the volumes of the two masses. Three of these solutions are illustrated in figs. 2, 3, 4.
The section shown is that passing through the axis of rotation and the two centres,
but the places are marked which the extremities of the mean axes would reach if the
section had been taken at right angles to the axis of rotation. ‘

The table of § 21 shows that the radius vector at which instability sets in only
changes from 2:457 to 2514, whilst A, the ratio of the mass of the satellite to that of
the planet, changes from zero to unity. The distance between the vertices of the

* See reference in § 18 above.

VOL. OCVI.—A. 21
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two ellipsoids also remains wonderfully nearly constant throughout a wide range of
change in the value of \; for when X\ = 04 it is 0'653, and when A = 1 it is 0°660,
only falling to 0°633 at its minimum.

Thus far I have been speaking of the modified problem of RocuE in which the
planet assumes the appropriate figure of equilibrium, but 1 have also obtained the
solution of Rocmr’s problem for an infinitely small satellite and a spherical planet.
As stated in the Preface, the radius vector of limiting stability, which has been called
“Rocmg’s limit,” is found to be 2'4553, and the axes of the critical ellipsoid are
proportional to the numbers 10000, 5114, 4827. These may be compared with the
2:44 and 1000, 496, 469 determined by Rocur himself. When we consider the
methods which he employed, we must be struck with the closeness to accuracy to
which he attained.

For the infinitely small satellite *the modification” of Rocur's problem hardly
introduces any sensible change in the results, but for satellites of finite mass stability
will continue to subsist for a slightly smaller radius vector for the spherical than for the
ellipsoidal planet. In other words, the ellipticity of the planet induces instability
earlier than would be otherwise the case.

Rocne did not attempt to investigate how closely his equations were capable of
giving the ellipsoid most nearly representative of the truth, nor did he estimate how
far the ellipsoid is an accurate solution. These points are considered above, and it
was the desirability of making the investigation with a closer degree of accuracy which
occasioned many of the difficulties encountered.

For the infinitely small satellite the ellipsoidal solution is exact, and with a
spherical planet, but not for an ellipsoidal one, RocHE's equations give that ellipsoid
exactly. In this case, however, the change introduced by the modification of RocHr’s
problem is quite unimportant.

For finite satellites RocHE's equations require sensible modification, and the solution
of the “modified” problem is different from that of the unmodified one, although not to
an important extent. But the ellipsoid derived from the corrected equations is deformed
by an infinite series of ellipsoidal harmonic deformations, beginning with terms of the
third order. Of these, the only ones which have any sensible effect are those which
may be described as zonal with respect to the satellite’s radius vector.

By far the most important of these is the third zonal harmonic, whereby the
satellite assumes a somewhat pear-shaped figure, being sharpened towards the stalk
end of the pear pointing towards the planet, and bluntened at the other end. In
consequence of this deformation the shape is slightly flattened between the stalk
and the middle.

The fifth and successive odd zonal harmonics accentuate the sharpening of the
stalk and the bluntening of the remote end. The fourth, sixth, and successive even
harmonics also accentuate the protrusion of the stalk, but tend to fill up the deficiency
at the remote end.
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The general effect must be very like what results from the second approximation
to the pear-shaped figure of equilibrium,* for I found that the ellipsoidal form was
but slightly changed over the greater part of the periphery, whilst a protrusion
occurred at one end—in this present case pointing towards the planet.

In figs. 2, 8, 4, the protrusions at one end and the bluntening at the other, as
computed from the third, fourth, and fifth harmonies, are indicated by dotted lines.
It appears from these figures that, at least up to the point when instability sets in,
the ellipsoid remains surprisingly near to the correct solution.

For an infinitely small satellite minimum radius vector also gives minimum angulgr
momentum, so that the closest possible satellite is also in a state of limiting stability.
But this is not the case for finite satellites, and there exists an unstable ellipsoidal
satellite with smaller radius vector than is consistent with stability. Thus for a
satellite of four-fifths of the mass of the planet the minimum radius vector is
2'36, whilst stability ceases at a distance of 2'50. Again, for equal masses
stability ceases at 2-514, whilst the possibility of an ellipsoidal solution extends
to 2-343.

If we follow the forms of the more and more elongated satellites, when the radius
vector has begun to increase again, we find explicitly in the case of equal masses,
and with practical certainty for all ratios of masses, that the distance between the
two vertices continues to diminish and finally becomes negative. At this stage the
two masses overlap, a conclusion which is, of course, physically impossible. But
the calculation is based on the assumed adequacy of the approximations, and it is
certain that the harmonic deformations of the ellipsoids increase rapidly, so that
each body puts out a protrusion towards the other. The two masses of liquid must
therefore really meet before we reach the stage of overlapping ellipsoids. As far as
can be seen, the approximation has become very imperfect—perhaps evanescent—
before the two ellipsoids cross. It will be best to continue the discussion of the
meaning of this result after we have considered the true secular stability of the two
masses of liquid. ‘

If a satellite, being a particle, revolves about a rotating planet, whose tides are
subject to friction, there are, for given angular momentum, two configurations (if any)
in which the planet always presents the same face to the satellite. In one of these,
which is unstable, the satellite is close to the planet; in the other, which is stable, it
is remote.t  If the angular momentum of the system be diminished, the radius vector
of the stable configuration diminishes and that of the unstable one increases until the
two coalesce. For yet smaller angular momentum there is no configuration possible
in which the planet shall always present the same face to the satellite. We see then
that amongst all possible configurations in which the planet presents the same face to

* See ¢ Stability,” referred to in the Preface.
t See ‘Roy. Soc. Proc.,” No. 197, 1879, or Appendix G (b) to vol. IT. of TrHOMSON and TArr’s ¢ Natural
Philosophy.’
212
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the satellite, that one is in limiting stability, in which the two solutions coalesce with
minimum angular momentum.

A rotating liquid planet will continue to repel its satellite so long as it has any
rotational momentum to transfer to the orbital momentum of the satellite. Hence an
infinitesimal satellite will be repelled to infinity, and the configuration of limiting
stability for an infinitesimal satellite attending a planet, which always presents the
same face to it, is one with infinite radius vector.

Very nearly the same conditions hold good when both planet and satellite are
subject to frictional tides. In § 2 it is proved that when each body is constrainedly
s]_oherical, the radius vector of limiting stability is infinite when the ratio of the
masses is infinitely small. The radius vector decreases with great rapidity as the
ratio of the masses increases, and when the masses are equal, the radius vector of
limiting stability is 1738 times the radius of a sphere whose mass is equal to the sum
of the masses, or is 219 times the radius of either of the two spheres. Thus, when
the ratio of the masses falls from zero to unity (and this embraces all possible cases),
limiting stability occurs with a radius vector which falls from infinity until the two
spheres are only just clear of one another.

When we pass from the case of the two spheres to that of two masses, each of
which is a figure of equilibrium under the attraction of itself and its companion, and
subject to centrifugal force, the calculation becomes exceedingly complicated. Since
the radius vector of limiting stability in every case must be greater than that of
RocuE's ellipsoid in limiting stability, and since in the latter case instability sets in
through the deformation of the smaller body, it follows that in every case of true
limiting secular stability of the system, instability supervenes through tidal friction.

When the ratio of the masses is small, we have seen that limiting stability occurs
when the two masses are far apart. In this case the deformations of figure are small,
and could easily be computed by spherical harmonic analysis.

For finite values of the ratio of masses, when spherical harmonic analysis would
fail, a fair degree of exactness in the result may be obtained from the approximate
formula of § 19. There would be no serious error from this formula when the ratio
of masses is less than a half, but for greater values of the ratio it seems necessary to
have recourse to the laborious processes employed in determining RocurE’s ellipsoids.
I thought, then, that it might suffice to compute the configuration of true secular
limiting stability in the case of equal masses. It is illustrated in fig. 5, and we see
that the radius vector is 2:638. We found that for a pair of equal spheres, instability
only set in when the radius vector, measured in the same unit, was 1-738. Thus the
deformations of the two masses forbid them to approach as near to one another as if
they were spheres. It should be noted that instability in this case must arise from
tidal friction, because RocuE’s ellipsoid in limiting stability was found to have a
radius vector of 2'514.

When PoiNcarf announced that there is a figure of equilibrium bearing some
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resemblance to a pear, he also conjectured that the constriction between the stalk and
the middle of the pear might become developed until it became a thin neck of liquid
joining two bulbs, and that yet further the neck might break and the two masses
become detached. References to my own papers on this pear-shaped figure and its
stability are given above in the preface, and the present investigation was undertaken
in the hope that a revision of RocHE's work would throw some light on the figure
when the constriction has developed into a thin neck of liquid.

As a preliminary to greater exactness, I have in § 8 considered the motion of two
masses of liquid, each constrainedly spherical, and joined to one another by a weight-
less pipe. Through such a pipe liquid can pass from one sphere to the other, and it
will continue to do so until, for given radius vector, the spheres bear some definite
ratio to one another; or, to state the matter otherwise, two spherical masses of given
ratio, revolving in a circular orbit without relative motion, can be started with some
definite radius vector so that liquid will not flow from one to the otber.

In this system the ratio of the masses and the radius vector are the only
parameters, and I find that the condition of equilibrium is a cubic equation in
the radius vector with coefficients which are functions of the ratio of the masses.
The cubic has three real roots of which only one has a physical meaning, and the
solution is illustrated graphically in fig. 1. The single circle on the right is the
larger sphere, and it is maintained of constant size for convenience of illustration.
The smaller circles on the left represent the solutions for various ratios of masses,
which are the cubes of the numbers written on the successive circles.

The solution of this problem seems to me very curious, but it does not possess
much physical interest, since it is proved in § 3 that all the solutions are unstable.

The distance between the two masses is much smaller than is the case with any
of RocHE’s ellipsoids, even with minimum radius vector, and accordingly it did not
seem probable that the parallel problem, when the two masses are liquid and
deformed, would possess any solution at all ; nevertheless, it was worth while to
pursue the investigation to the end.

When the masses are ellipsoidal and are joined by a weightless pipe, the solution
would become very complicated, but the question may be attacked indirectly.
When the masses are spherical there is a certain function of the radius vector and
of the ratio of the masses which must vanish when a channel of communication is
opened between them. If this function be computed for two given spherical masses
with given radius vector, we find that it is negative if the two masses are too
close together to admit of junction by a pipe without disturbance of their relative
masses, and that it is positive if they are too far apart.

When the figures of equilibrium of two detached masses of liquid are determined,
it is possible to form the corresponding function, but part of it consists of an infinite
series of which it is only practically possible to give the first few terms. Now I
have computed this function in a number of cases of RocHE's ellipsoids, and have
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found that the few terms of the infinite series are small, that the series is apparently
rapidly convergent, and that the function is decisively positive. We may conclude
then that in none of the cases, for which numerical results have been given, is it even
approximately possible to make a junction between the masses; and even if we
could do so, the system would be unstable, because removal of a constraint may
destroy but cannot impart stability. To find any possible solution we must consider
cases where the two masses are much closer together.

I think, however, that there must be a figure of the kind sought, for the following
reasons : If the function referred to above be formed for given radius vector and
ratio of masses, we find that its value is very much less than if the two masses are
spherical. Thus the tendency of liquid to flow from the larger to the smaller mass
(when they are too far apart) is much less than if the two masses were spherical.
Every increase of ellipticity in the ellipsoids tends to diminish the function, and the
series tends to become less convergent; and besides I have made no attempt to
evaluate the terms in the function which correspond to the harmonic inequalities
of the ellipsoids, and these would tend to diminish the function still further.

It was remarked above that two much elongated ellipsoids seem to coalesce finally,
but that the approximations were not satisfactory. I find, however, that even to the
end the function, as far as it could be computed, was still positive although much
diminished. It appears to me then probable that if we could obtain a more complete
expression for the function, we should find that it vanishes before the two ellipsoids
overlap. There is then some reason to believe in the existence of a figure of
equilibrium consisting of two quasi-ellipsoids joined by a narrow mneck; but such a
figure must be unstable.

I have, in fig. 6, made a highly conjectural drawing of such a figure where the two

Fig. 6. Conjectural drawing of unstable figure of two equal masses of liquid just in contact.

bulbs are equal. The data are derived from the computations for the much elongated.
ellipsoids just before they are found to overlap.

Mr. JeaNs has considered the equilibrium and stability of infinite rotating
cylinders of liquid. This is the two-dimensional analogue of the three-dimensional
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problem.* He finds solutions perfectly analogous to MACLAURIN'S and JAcoBr's
ellipsoids and to the pear-shaped figure. In consequence of the greater simplicity of
the conditions, he is able to follow the development of the cylinder of pear-shaped
section until the neck joining the two parts has become quite thin. His analysis,
besides, points to the rupture of the neck, although the method fails to afford the
actual shapes and dimensions in this last stage of development.

He is able to prove conclusively that the cylinder of pear-shaped section is stable,
and it is important in connection with our present investigation to note that he finds
no evidence of any break in the stability of that cylinder up to its division into two
parts. ’

The stability of MAcLAURIN'S and of the shorter Jacobian ellipsoids is, of course,
well established, and I imagined that the pear-shaped figure with incipient furrowing
was also proved to be stable. But M. LiapouNorr now statest that he is able to
prove the pear-shaped figure to be unstable from the beginning, and he attributes the
discrepancy between our conclusions to the fact that my result depended on the
supposed rapid convergency of an infinite series, of which only a few terms were
computed. The terms computed diminish rapidly, and it seemed to me evident that
the rapid diminution must continue, so that I feel unable to accept the hypothesis
that the sum of the neglected terms could possibly amount to the very considerable
total which would be necessary to reverse my conclusion. I am, therefore, still of
opinion that the pear-shaped figure is stable at the beginning ; and this view receives
a powerful confirmation from Mr. JEANS'S researches. The final decision must await
the publication of M. LIAPOUNOFF’S investigation.

But there is another difficulty raised by the present paper. I had fully expected to
find an approximation to a stable figure consisting of two bulbs joined by a thin neck,
but while my work indicates the existence of such a'figure, it seems to me, at present,
conclusive against its stability. The weightless pipe joining two bulbs of fluid is
clearly only a crude representative of a neck of fluid, but I find it hard to imagine
that it is so very imperfect that the reality should be stable, while the representation
is unstable. My present investigation shows that two quasi-ellipsoids just detached
from one another do not possess secular stability. The vertices of such bodies
would be blunt points nearly in contact; the introduction of a short pipe without
weight between these blunt points would differ exceedingly little from two sharp
points actually in contact. Is it possible that the difference would produce all the
change from great instability even to limiting stability ? The opening of a channel
between the two masses is the removal of a constraint ; the system does not possess
true secular stability when the channel is closed,-and we should have to believe that
the removal of a constraint induces stability ; and this is, I think, impossible.

If, then, Mr. JeANs is right in believing in the stable transition from the single

¥ «On the Equilibrium of Rotating Liquid Cylinders,” < Phil. Trans.,” A, vol. 200, pp. 67-104.
T See reference in Preface.
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cylinder to two revolving about one another, and if I am correct now, the two
problems must part company at some undetermined stage. M. Liarounorr will no
doubt contend that it is at the beginning of the pear-shaped series, but for the
present I should disagree with such an opmion.

I have no suggestion to make as to the stage at which the pear-shaped figure may
become unstable, or as to the figure which must be coalescent with it when instability
supervenes. These points must await the elucidation which they will no doubt
receive from future investigations.

One question remains: If my present conclusions are correct, do they entirely
destroy the applicability of this group of ideas to the explanation of the birth of
satellites or of double stars ? I think not, for we see how a tendency to fission arises,
and it is not impossible that a period of turbulence may naturally supervene in the
process of separation. Finally, as Mr. JEANs points out, heterogeneity of density
introduces new and important differences in the conditions.
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